74AC125 74ACT125

FEATURES

- 74ACT125 has TTL-compatible inputs
- 74AC125 has CMOS-compatible inputs
- 3-State outputs source/sink 24mA
- 3-State outputs drive bus lines or buffer memory address registers
- Meets or exceeds JEDEC standard standard for 74AC(T)XX family

QUICK REFERENCE DATA

DESCRIPTION

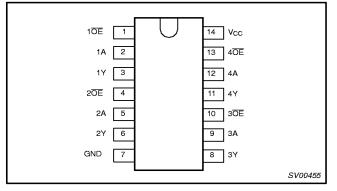
The 74AC125/74ACT125 is a high-performance, low-power, low-voltage, Si-gate CMOS device and superior to most advanced CMOS compatible TTL families.

The 74AC125/74ACT125 consists of four independent non-inverting buffers/line drivers with 3-state outputs. The 3-state outputs (nY) are controlled by the associated output enable input (nOE). A HIGH at nOE causes the outputs to assume a high impedance OFF-state.

SYMBOL	PARAMETER	CONDITIONS	AC		ACT	UNIT		
			$V_{\rm CC} = 3.3 V$	V _{CC} = 5.0V	V _{CC} = 5.0V			
t _{PHL} /t _{PLH}	Propagation delay nA to nY	$C_{L} = 50 pF$ $V_{CC} = 3.3 V$	3.4 2.4		3.8	ns		
CI	Input capacitance		4.5			рF		
C _{PD}	Power dissipation capacitance per buffer	V _I = GND to V _{CC} ¹ outputs enabled outputs disabled	22 5				18 3	pF

NOTE:

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μ W):


 $\begin{array}{l} P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma \left(C_L \times V_{CC}^2 \times f_0 \right) \text{ where:} \\ f_i = \text{input frequency in MHz; } C_L = \text{output load capacity in pF;} \\ f_o = \text{output frequency in MHz; } V_{CC} = \text{supply voltage in V;} \end{array}$

 Σ (C_L x V_{CC}² x f_o) = sum of outputs.

ORDERING AND PACKAGE INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DRAWING NUMBER
14-Pin Plastic SOL	−40°C to +85°C	74AC125D 74ACT125D	74AC125D 74ACT125D	SOT108-1
14-Pin Plastic SSOP Type II	−40°C to +85°C	74AC125DB 74ACT125DB	74AC125DB 74ACT125DB	SOT337-1
14-Pin Plastic TSSOP Type I	−40°C to +85°C	74AC125PW 74ACT125PW	74AC125PW DH 74ACT125PW DH	SOT402-1

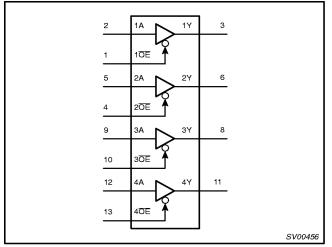
PIN CONFIGURATION

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
1, 4, 10, 13	$1\overline{OE}$ to $4\overline{OE}$	Data enable inputs (active LOW)
2, 5, 9, 12	1A to 4A	Data inputs
3, 6, 8, 11	1Y to 4Y	Data Outputs
7	GND	Ground (0 V)
14	V _{CC}	Positive supply voltage

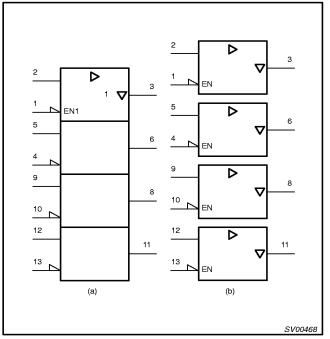
FUNCTION TABLE

INP	OUTPUT	
nOE	nA	nY
L	L	L
L	н	н
н	х	Z

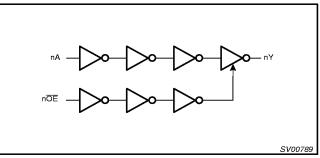

H = HIGH voltage level

L = LOW voltage level

X = don't care


Z = high impedance OFF-state

LOGIC SYMBOL



1997 May 15

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

74AC125 74ACT125

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIM	ITS	UNIT
STWDUL		MIN	MAX	1
V _{CC}	DC supply voltage for 'AC	2.0	6.0	V
V _{CC}	DC supply voltage for 'ACT	4.5	5.5	V
V _{IN}	DC input voltage range	0	V _{CC}	V
Vo	DC output voltage range	0	V _{CC}	V
T _{amb}	Operating free-air temperature range	-40	+85	°C
ΔV/Δt	$\begin{array}{l} \mbox{Minimum input edge rate} \\ $	125		mV/ns
	— ACT devices V _{IN} from 0.8V to 2.0V V _{CC} @ 4.5V, 5.5V	125		

ABSOLUTE MAXIMUM RATINGS¹

in accordance with the Absolute Maximum Rating System (IEC134)

Voltages are referenced to GND (ground = 0V)

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +7.0	V
		$V_{IN} = -0.5V$	-20	0
lik	DC input diode current	$V_{\rm IN} = V_{\rm CC} + 0.5 V$	+20	mA
V _{IN}	DC input voltage		–0.5 to V_{CC} +0.5	V
I		V _O = -0.5V	-20	0
l _{OK}	DC output diode current	$V_{\rm O} = V_{\rm CC} + 0.5 V$	+20	mA
Vo	DC output voltage		–0.5 to V _{CC} +0.5	V
lo	DC output source or sink current		± 50	mA
I _{CC} , I _{GND}	DC V_{CC} or GND current per output		± 50	mA
I _{CC} , I _{GND}	DC V _{CC} or GND current		±200	mA
T _{stg}	Storage temperature range		–65 to 150	°C
Ртот	Power dissipation per package – plastic mini-pack (SO) – plastic shrink mini-pack (SSOP and TSSOP)	above +70°C derate linearly with 8 mW/K above +60°C derate linearly with 5.5 mW/K	500 500	mW

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Product specification

74AC125 74ACT125

DC ELECTRICAL CHARACTERISTICS (74AC125) Over recommended operating conditions voltages are referenced to GND (ground = 0V)

SYMBOL	SYMBOL PARAMETER	TEST CONDITIONS	V _{CC} (V)	Temp	+85°C			
			(-)	MIN	TYP ¹	МАХ	1	
		3.0	2.1	1.5				
VIH	HIGH level Input voltage	$V_{OUT} = 0.1V$ or $(V_{CC} - 0.1V)$	4.5	3.15	2.25		V	
			5.5	3.85	2.75			
			3.0		1.5	0.9		
VIL	LOW level Input voltage	$V_{OUT} = 0.1V$ or $(V_{CC} - 0.1V)$	4.5		2.25	1.35	l v	
			5.5		2.75	1.65	1	
			3.0	2.9	2.99			
		I _{OUT} = -50 μA	4.5	4.4	4.49		l v	
		5.5	5.4	5.49		1		
∨он	V _{OH} HIGH level output voltage	$V_{IN} = V_{IL}$ or V_{IH} , $I_{OH} = -12mA^1$	3.0	2.46				
		$V_{IN} = V_{IL} \text{ or } V_{IH}, I_{OH} = -24 \text{ mA}^1$	4.5	3.76			V	
		$V_{IN} = V_{IL} \text{ or } V_{IH}, I_{OH} = -24 \text{mA}^1$	5.5	4.76			1	
			3.0		0.01	0.1		
		l _{OUT} = 50 μA	4.5		0.01	0.1	l v	
V			5.5		0.01	0.1	1	
V _{OL}	LOW level output voltage	$V_{IN} = V_{IL} \text{ or } V_{IH}, I_{OL} = 12mA^1$	3.0			0.44		
		$V_{IN} = V_{IL} \text{ or } V_{IH}, I_{OL} = 24 \text{mA}^1$	4.5			0.44	1 v	
		$V_{IN} = V_{IL} \text{ or } V_{IH}, I_{OL} = 24 \text{mA}^1$	5.5			0.44	1	
I _{IN}	Input leakage current	$V_{IN} = V_{CC}, GND$	5.5			±1.0	μA	
I _{OZ}	3-State output OFF-state current		5.5			±2.5	μA	
I _{OLD} ²	Dynamic output current ²	V _{OLD} = 1.65V max	5.5	75			mA	
I _{OHD} ²	Dynamic output current ²	V _{OHD} = 3.85V min	5.5			-75	mA	
Icc	Quiescent supply current	V _{IN} = V _{CC} or GND	5.5			40	μA	

NOTES:

1. All outputs loaded

2. Maximum test duration 2.0 ms; one output loaded at a time

74AC125 74ACT125

DC ELECTRICAL CHARACTERISTICS (74ACT125) Over recommended operating conditions voltages are referenced to GND (ground = 0V)

SYMBOL	PARAMETER	TEST CONDITIONS	V _{CC} (V)	Temp = -40°C to +85°C			UNIT	
				MIN	TYP ¹	МАХ		
V	HIGH level Input voltage	$V_{OUT} = 0.1 V \text{ or } (V_{CC} - 0.1 V)$	4.5	2.0	1.5		v	
VIH	nich level linput voltage	$v_{OUT} = 0.1$ $v_{OUT} = 0.1$ $v_{OUT} = 0.1$ $v_{OUT} = 0.1$	5.5	2.0	1.5			
VIL	LOW level Input voltage	$V_{OUT} = 0.1V \text{ or } (V_{CC} - 0.1V)$	4.5		1.5	0.8	v	
۷IL	Low level input voltage		5.5		1.5	0.8	ľ	
		Ι _{ΟUT} = –50 μΑ	4.5	4.4	4.49		v	
		O = -20 fr	5.5	5.4	5.49			
V _{OH}	V _{OH} HIGH level output voltage	V _{IN} = V _{IL} or V _{IH} , I _{OH} = –24mA ¹	4.5	3.76			v	
		$V_{IN} = V_{IL} \text{ or } V_{IH}, I_{OH} = -24 \text{mA}^1$	5.5	4.76				
		501	4.5		0.01	0.1	v	
V		l _{OUT} = 50 μA	5.5		0.01	0.1		
V _{OL}	LOW level output voltage	$V_{IN} = V_{IL} \text{ or } V_{IH}, I_{OL} = 24 \text{mA}^1$	4.5			0.44	v	
		$V_{IN} = V_{IL} \text{ or } V_{IH}, I_{OL} = 24 \text{mA}^1$	5.5			0.44		
I _{IN}	Input leakage current	$V_{IN} = V_{CC}, GND$	5.5			±1.0	μA	
I _{OZ}	3-State output OFF-state current	$ \begin{array}{l} V_{IN} \left({OE} \right) = V_{IL}, V_{IH} \\ V_{IN} = V_{CC}, GND \\ V_{OUT} = V_{CC}, GND \end{array} $	5.5			±2.5	μA	
∆l _{CC}	Additional quiescent supply current per input pin	$V_{IN} = V_{CC} - 2.1V$ Other inputs at V_{CC} or GND; $I_{OUT} = 0$	5.5			1.5	mA	
I _{OLD} 2	Dynamic output current	V _{OLD} = 1.65V max	5.5	75			mA	
I _{OHD} 2	Dynamic output current	V _{OHD} = 3.85V min	5.5			-75	mA	
Icc	Quiescent supply current	V _{IN} = V _{CC} or GND	5.5			40	μA	

NOTES:

All outputs loaded
Maximum test duration 2.0ms, one output loaded at a time

74AC125 74ACT125

AC CHARACTERISTICS FOR 74AC125

GND = 0V; t_r = t_f = 2.5ns; C_L = 50pF; R_L = 500 $\Omega;$.

			LIMITS						
SYMBOL PARAMETER		V _{CC} ¹ (V)	$\begin{array}{c c} V_{cc}^{1} \\ (V) \end{array} T_{amb} = +25^{\circ}C \end{array}$			T _{amb} = −40°C to +85°C		UNIT	WAVEFORM
			MIN	ΤΥΡ	MAX	MIN	MAX		
t _{PLH}	Propagation delay nA to nY	3.3 5.0	2.0 1.5	3.4 2.4	9.0 6	1.5 1.0	10 7	ns	1,3
t _{PHL}	Propagation delay nA to nY	3.3 5.0	2.0 1.5	3.4 2.5	9.0 6	1.5 1.0	10 7	ns	1,3
t _{PZH}	3-State output enable time nOE to nY	3.3 5.0	2.0 1.5	4.3 2.9	9.5 6.5	1.5 1.0	11 7.5	ns	2, 3
t _{PZL}	3-State output enable time nOE to nY	3.3 5.0	2.0 1.5	4.7 3.2	9.5 6.5	1.5 1.0	11 7.5	ns	2, 3
t _{PHZ}	3-State output disable time nOE to nY	3.3 5.0	2.0 1.5	4.4 2.9	9.0 6	1.5 1.0	10 7	ns	2, 3
t _{PLZ}	3-State output disable time nOE to nY	3.3 5.0	2.0 1.5	4.2 3.0	9.0 6	1.5 1.0	10 7	ns	2, 3

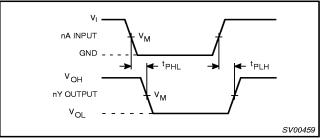
NOTE:

1. Voltage range 3.3V is V_{CC} = $3.3V \pm 0.3V$ Voltage range 5.0V is V_{CC} = $5.0V \pm 0.5V$

AC CHARACTERISTICS FOR 74ACT125

GND = 0V; t_r = t_f = 2.5ns; C_L = 50pF; R_L = 500 $\Omega;$.

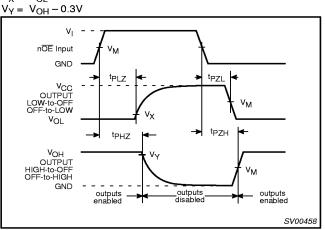
			LIMITS						
SYMBOL PARAMETER		V _{CC} ¹ (V)	$T_{amb} = +25^{\circ}C$		T _{amb} = −40°C to +85°C		UNIT	WAVEFORM	
			MIN	ТҮР	MAX	MIN	MAX		
t _{PLH}	Propagation delay nA to nY	5.0	2.0	4.4	9.0	1.5	10	ns	1, 3
t _{PHL}	Propagation delay nA to nY	5.0	2.0	3.3	9.0	1.5	10	ns	1, 3
t _{PZH}	3-State output enable time nOE to nY	5.0	2.0	3.7	8.5	1.5	9.5	ns	2, 3
t _{PZL}	3-State output enable time nOE to nY	5.0	2.0	4	8.5	1.5	9.5	ns	2, 3
t _{PHZ}	3-State output disable time nOE to nY	5.0	2.0	4	8.0	1.5	9	ns	2, 3
t _{PLZ}	3-State output disable time nOE to nY	5.0	2.0	3.8	8.0	1.5	9	ns	2, 3


NOTE:

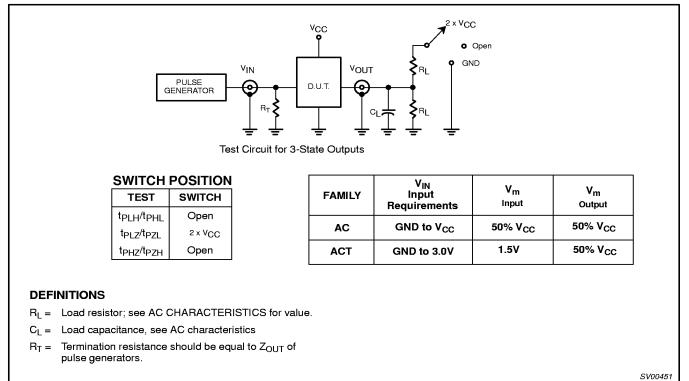
1. Voltage range 5.0V is V_{CC} = 5.0V \pm 0.5V

74AC125	
74ACT125	

AC WAVEFORMS

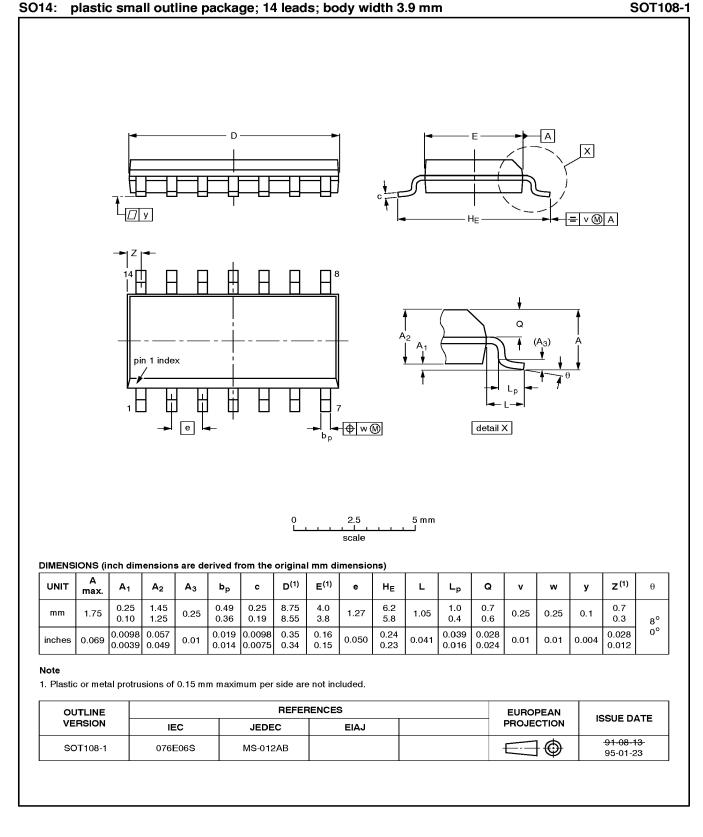

 V_m = 50% V_{CC} for 'AC devices; 1.5V for 'ACT devices V_m = 50% V_{CC} for 'AC/'ACT devices

Waveform 1. Input (nA) to output (nY) propagation delays and output transition times.


 V_{OL} and V_{OH} are the typical output voltage drops that occur with the output load.

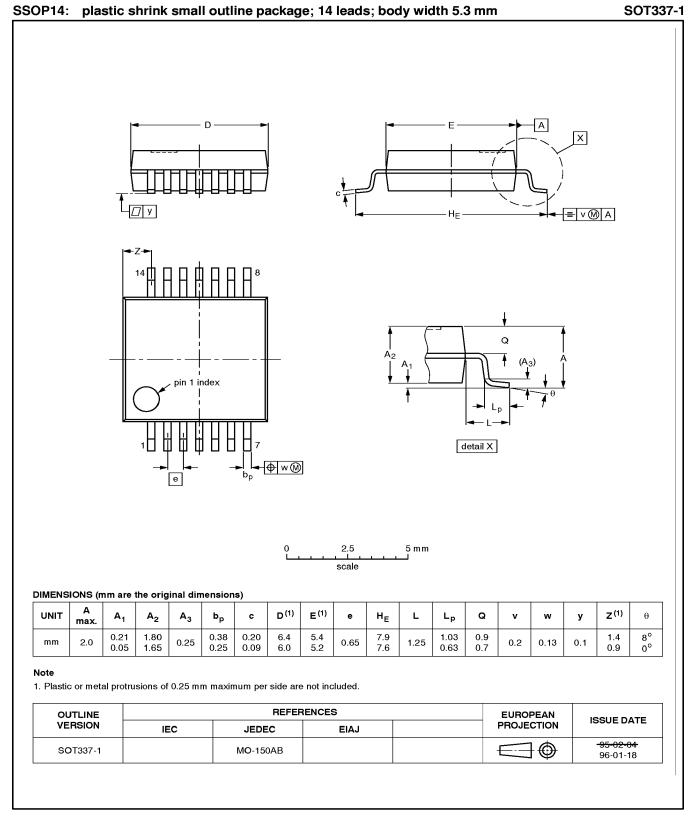
 $V_{X} = V_{OL} + 0.3V$

Waveform 2. 3-state enable and disable times.

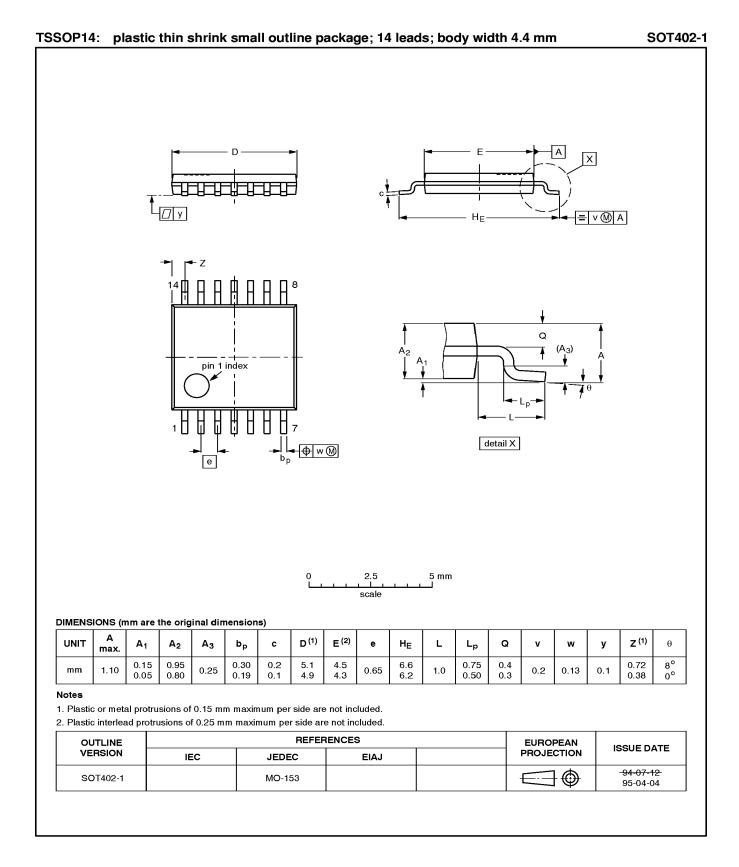

TEST CIRCUIT

Waveform 3. Load circuitry for switching times.

Product specification


74AC125 74ACT125

1997 May 15


Product specification

74AC125 74ACT125

1997 May 15

74AC125 74ACT125

1997 May 15