3-T 直流性 CODE DE供应商 EXER WITH ADDRESS LATCHES; INVERTING

FEATURES

- Combines 3-to-8 decoder with 3-bit latch
- Multiple input enable for easy expansion or independent controls
- Active LOW mutually exclusive outputs
- Output capability: standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT137 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT137 are 3-to-8 line decoder/demultiplexers with latches at the three address inputs (A_n). The "137" essentially combines the 3-to-8 decoder function with a 3-bit storage latch. When the latch is enabled (LE = LOW), the "137" acts as a 3-to-8 active LOW decoder. When the latch enable (LE) goes from LOW-to-HIGH, the last data present at the inputs before this transition, is stored in the latches. Further address changes are ignored as long as LE remains HIGH.

The output enable input (\overline{E}_1 and E_2) controls the state of the outputs independent of the address inputs or latch operation. All outputs are HIGH unless E₁ is LOW and E₂ is HIGH.

The "137" is ideally suited for implementing non-overlapping decoders in 3-state systems and strobed (stored address) applications in bus oriented systems.

SYMBOL		CONDITIONS	TYP	UNIT		
	PARAMETER	CONDITIONS	нс	нст	CIVIT	
t _{PHL} / t _{PLH}	propagation delay An to \overline{Y}_n LE to \overline{Y}_n E1 to \overline{Y}_n E2 to \overline{Y}_n	C _L = 15 pF V _{CC} = 5 V	18 17 15 15	19 21 17 15	ns ns ns	
CI	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per package	notes 1 and 2	57	59	pF	

 $GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns$

Notes

1. CPD is used to determine the dynamic power dissipation (PD in μ W):

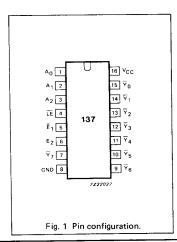
PD = CPD x
$$VCC^2$$
 x f_i + Σ (CL x VCC^2 x f_o) where:

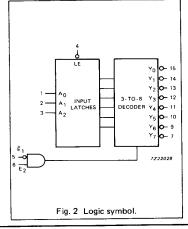
fi = input frequency in MHz fo = output frequency in MHz CL = output load capacitance in pF

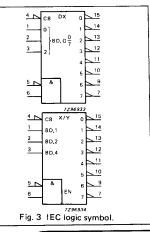
VCC = supply voltage in V

 $\Sigma (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

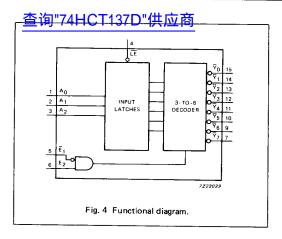
2. For HC the condition is V_I = GND to V_{CC}
For HCT the condition is V_I = GND to V_{CC} - 1.5 V


PACKAGE OUTLINES

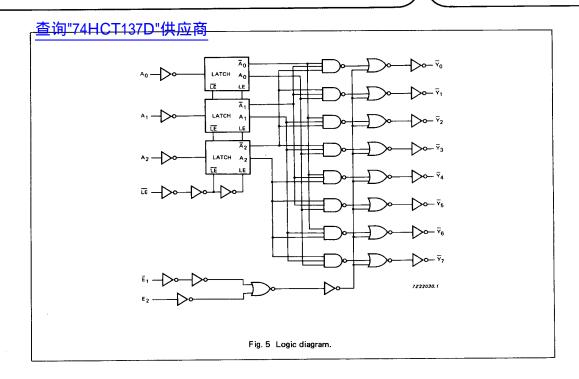

16-lead DIL; plastic (SOT38Z).


16-lead mini-pack; plastic (SO16; SOT109A).

PIN DESCRIPTION


PIN NO.	SYMBOL	NAME AND FUNCTION							
1, 2, 3	A ₀ to A ₂	data inputs							
4	ĪĒ _	latch enable input (active LOW)							
5	Ē₁	data enable input (active LOW)							
6	E ₂	data enable input (active HIGH)							
8	GND	ground (0 V)							
15, 14, 13, 12 11, 10, 9, 7	² , ∇ ₀ to ∇ ₇	multiplexer outputs							
16	Vcc	positive supply voltage							

December 1990


FUNCTION TABLE

	INPUTS							OUTPUTS								
LE	Ē1	E ₂	A ₀	Α1	A ₂	70	₹1	∀ 2	73	₹4	₹5	7 6	7 7			
н	·L	н	×	X	x	stable										
×	H X	X L	×	X X	×	H	H	Н	H	H	H	H	H			
L L L	LLL	IIII	THLE	LLHH		LHH	H L H H	HHLH	THHL	# # # #	****	I I I I	****			
بالالا		TIII	TLT	LLH	TTTT	H H H	TITI	1111	IIII	TIIL	HTH	HHLH	###			

H = HIGH voltage level

L = LOW voltage level X = don't care

MSI

74HC/HCT137 MSI

DC 查稿APTHAISTIC\$ 370 PJ4k应商

For the DC characteristics see chapter "HCMOS family characteristics", section "Family specifications".

Output capability: standard

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

GND = 0 V; $t_r = t_f = 6 \text{ ns}$; $C_L = 50 \text{ pF}$

SYMBOL	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
		+25			-40	-40 to +85 -40		-40 to +125		VCC	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.	1		
tPHL/ tPLH	propagation delay A _n to Ÿ _n		58 21 17	180 36 31		225 45 38		270 54 46	ns	2.0 4.5 6.0	Fig. 6
t _{PHL} /	propagation delay LE to Y _n		55 20 16	190 38 32		240 48 41		285 57 48	ns	2.0 4.5 6.0	Fig. 7
^t PHL [/] ^t PLH	propagation delay E₁ to Ÿn		50 18 14	145 29 25		180 36 31		220 44 38	ns	2.0 4.5 6.0	Fig. 7
^t PHL [/] ^t PLH	propagation delay E ₂ to ∇ _n		50 18 14	145 29 25		180 36 31		220 44 38	ns	2.0 4.5 6.0	Fig. 6
^t THL [/] ^t TLH	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Fig. 6
tw	LE pulse width HIGH	50 10 9	11 4 3		65 13 11		75 15 13		ns	2.0 4.5 6.0	Fig. 8
su	set-up time A _n to LE	50 10 9	3 1 1		65 13 11		75 15 13		ns	2.0 4.5 6.0	Fig. 8
h	hold time A _n to LE	30 6 5	3 1 1		40 8 7		45 9 8	,	ns	2.0	Fig. 8

D查询"ZHEAST1237D"供应商

For the DC characteristics see chapter "HCMOS family characteristics", section "Family specifications".

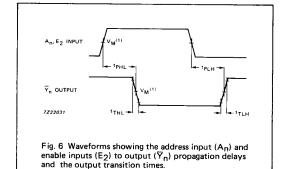
Output capability: standard

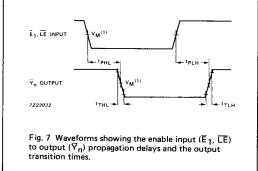
ICC category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
An	1.50
E ₁	1.50
E ₂	1.50
LE	1.50


AC CHARACTERISTICS FOR 74HCT


 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

SYMBOL	PARAMETER	T _{amb} (°C)								TEST CONDITIONS		
		74HCT							UNIT	V	WAVEFORMS	
		+25			-40 to +85		-40 to +125		ONII	v _{CC}	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.		-		
tPHL/ tPLH	propagation delay A _n to \overline{Y}_n		22	38		48		57	ns	4.5	Fig. 6	
tPHL/ tPLH	propagation delay LE to Y _n		25	44		55		66	ns	4.5	Fig. 7	
t _{PHL} / t _{PLH}	propagation delay E ₁ to Y _n		20	37		46		56	ns	4.5	Fig. 7	
t _{PHL} / t _{PLH}	propagation delay E ₂ to \overline{Y}_n		18	35		44		53	ns	4.5	Fig. 6	
^t THL [/] ^t TLH	output transition time		7	15		19		22	ns	4.5	Fig. 6	
tW	LE pulse width HIGH	10	5		13		15		ns	4.5	Fig. 8	
t _{su}	set-up time An to LE	10	2		13		15		ns	4.5	Fig. 8	
th	hold time A _n to LE	7	2		9		11		ns	4.5	Fig. 8	

查询"74HCT137D"供应商

AC WAVEFORMS

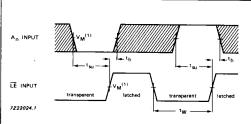
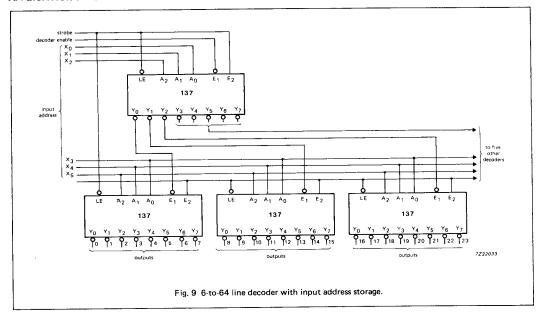


Fig. 8 Waveforms showing the data set-up, hold times for A_n input to \overline{LE} input and the latch enable pulse width.

Note to Fig. 8


The shaded areas indicate when the input is permitted to change for predictable output performance.

Note to AC waveforms

(1) HC : $V_M = 50\%$; $V_I = GND$ to V_{CC} . HCT: $V_M = 1.3$ V; $V_I = GND$ to 3 V.

查询"74HCT137D"供应商

APPLICATION INFORMATION

