

High Performance Step-Down DC-DC Converter With Adjustable Output Voltage

FEATURES

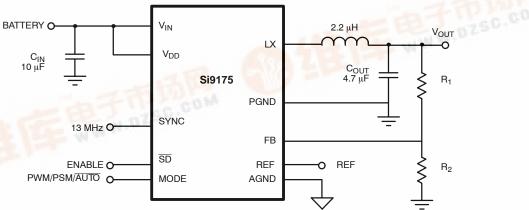
- 2-MHz PWM Operation
- Integrated MOSFET Switches
- 2.6-V to 6.0-V Input Voltage Range
- Minimal Number of External Components
- Up to 96% conversion efficiency
- 600-mA Load Capability
- 100% Duty Cycle Allows Low Dropout WWW.DZSC.COM
- Integrated Compensation Circuit
- Over-Current Protection
- Shutdown Current < 2 µA
- Thermal Shutdown
- Integrated UVLO
- 10-Pin MSOP and Space Saving MLP33 Packaging

- Synchronizable to13-MHz Clock
- User Selectable PWM, PSM, or AUTO Mode
- PSM Frequency ≥20 kHz for Inaudible Harmonics

APPLICATIONS

- W-CDMA Cell Phone
- PDAs/Palmtop PCs
- LCD Modules
- Portable Image Scanners
- **GPS** Receivers
- **Smart Phones**
- MP3 Players
- 3G Cell Phone
- Digital Cameras

DESCRIPTION


The Si9175 is a high efficiency 600-mA step down converter with internal low on resistance power MOSFET switch and synchronous rectifier transistors. It is designed to convert one cell Lilon battery or three cell alkaline battery voltages to a dynamically adjustable dc output. The integrated high frequency error amplifier with internal compensation minimizes external components.

In order to insure efficient conversion throughout the entire load range, PWM (pulse width modulation), PSM (pulse skipping mode) or Auto mode can be selected. In PWM mode, 2-MHz switching permits use of small external inductor and capacitor sizes allowing one of the smallest solutions. To minimize system noise, the switching frequency can be synchronized to an external 13-MHz clock.

PSM mode provides increased efficiency at light loads. In PSM mode the oscillator frequency is kept above 20 kHz to avoid audio band interference. When operating in Auto mode, the converter automatically selects operating in either PWM or PSM mode according to load current demand.

The Si9175 is available in the 10-pin MSOP and the even smaller MLP33 package and is specified to operate over the industrial temperature range of -40°C to 85°C. The Si9175 packaged in the MLP33 package is available in both standard and lead (Pb)-free.

TYPICAL APPLICATIONS CIRCUIT

Vasa ay istaconix 共应商

ABSOLUTE MAXIMUM RATINGS

Voltages Referenced to AGND = 0 V	
V _{IN} , V _{DD}	6.2 V
Lx, $\overline{\text{SD}}$, MODE, FB, C _{REF} , SYNC	0.3 to 6.2 V
	(or to $V_{DD} + 0.3 V$ whichever is less)
GND	0.3 to +0.3 V
ESD Rating	2 kV
Storage Temperature	–65 to 125°C
Operating Junction Temperature	150°C
Power Dissipation (Package) ^a	
10-pin MSOPb	481 mW
10-pin MLP33	915 mW

Thermal Impedance (Θ_{JA})
10-Pin MSOP
10-Pin MLP33
Peak Inductor Current
Notes
 Device mounted with all leads soldered or welded to PC board.

- b. Derate 7.4 mW/°C above 85°C.
- c. Derate 14 mW/°C above 85°C.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING RANGE

V _{IN} Range	Inductor
$C_{\mbox{\scriptsize IN}}$	Operating Load Current PWM Mode 0 to 600 mA
C_{OUT} 4.7 μF Ceramic	Operating Load Current PSM Mode 0 to 150 mA

SPECIFICATION	NS								
Parameter			Test Conditions Unless	Limits					
	Mode ^f	Symbol	$^{-40^{\circ}C}$ to 85°C, V $_{IN}$ = V $_{DD,}$, C_{IN} = 10 μF, C_{OUT} = 4.7 μF L = 2.2 μH, 2.6 V \leq V $_{IN}$ \leq 5.5 V, R_{1} = 11.3 kΩ, R_{2} = 20 kΩ		Min ^a	Typb	Max ^a	Unit	
Under Voltage Loci	kout (UVL	O)							
Under Voltage Lockout (tu	rn-on)		V _{IN} rising		2.3		2.5		
Hysteresis					0.1		V		
Shutdown (SD)									
Logic HIGH		V _{SDH}			1.6				
Logic LOW		V _{SDL}					0.4	V	
Delay to Output ^c			Settle Within ±2% accuracy SD rising	$R_L = 3.3 \Omega$			100		
, ,		^L en	t_{en} $t_r < 1 \mu s$ $R_L = 51 \Omega$	$R_L = 51 \Omega$		100		μs	
Pull Down		I _{SD}	Input at V _{IN}					μΑ	
Mode Selection Tri-	-Level Log	gic (MODE)							
MODE Pin HIGH	HIGH PWM			V _{IN} -0.4	V _{IN}		V		
MODE Pin LOW	Auto						0.4	V	
Mode Pin Input Current			MODE = GND			-5		μΑ	
			MODE = V _{IN}			5		μΑ	
Oscillator									
Frequency f _{OSC}		fosc			1.6	2	2.4	MHz	
External Clock Syn	chronizat	ion (SYNC)						
Frequency			SYNC Input = 500 mV _{p-p}			13		MHz	
Ac Coupled Sinewave			Frequency = 13 MHz		0.2		0.8	V _{p-p}	
Error Amplifier (FB	Pin)	•					•		
EDV/II A				T _A = 25°C	1.190	1.215	1.240	v	
FB Voltage Accuracy		V _{FB}		$T_A = -40 \text{ to } 85^{\circ}\text{C}$	1.173		1.257	V	
Power Supply Rejection		PSRR	V _{IN} = 2.6 V to 5.5 V _D	0		60		db	
Input Bias Current		I _{FB}	V _{FB} = 1.25 V		-1	0.01	1	μΑ	

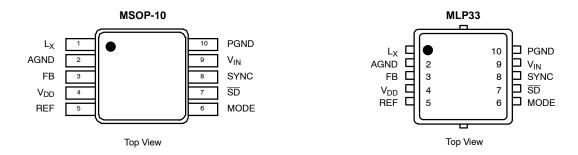
Vishay Siliconix

NS								
Parameter		Test Conditions Unless Specified			Limits			
Modef	Symbol	-40° C to 85°C, V _{IN} = V _{DD} , C _{IN} = 10 μF, C _{OUT} = 4.7 μF L = 2.2 μH, 2.6 V \leq V _{IN} \leq 5.5 V, R ₁ = 11.3 kΩ, R ₂ = 20 kΩ			Min ^a	Typb	Max ^a	Unit
on								
PWM	I _{LOAD}	V _{IN} = 3.6 V		600			mA	
PSM	I _{LOAD}	V _{IN} =	3.6 V				150	mA
- I	V_{DD}	V _{IN} = 2.6 V, I ₀	_{DUT} = 600	mA		190	300	mV
	BW					300		kHz
PWM		V _{INI} = 3.6 V	I _{OUT} =	30 mA to 600 mA		0.5		- %
PSM		V _{OUT} = 1.9 V @ 25°C	I _{OUT} =	30 mA to 75 mA		0.25		
PWM		<u>'</u>			±0.1		%/V	
PSM		$V_{OUT} = 3.0 \text{ V}, V_{IN} = 3.5 \text{ V to } 5.5 \text{ V}$				±0.1		
WM/PSM Switch Threshold Current I _{AUpk}				200		mA		
Inductor Peak Current Limit I _{Lpk}				1500				
On Resistance P-Channel		V 00V			250			
N-Channel	r _{DS(on)}	V _{IN} =	3.6 V			250		mΩ
PWM		2.05.0.0		I _{OUT} = 600 mA		60		mV _{p-p}
PSM		0.05 Ω C _{OUT(ESR)}		I _{OUT} = 30 mA		80		
PWM		V 00VV 00		I _{OUT} = 600 mA		90		0/
PSM		$v_{IN} = 3.6 \text{ v}, v_{OUT} = 3.3$	5 V	I _{OUT} = 30 mA		80		%
PSM		I _{OUT} ≥	30 mA		20			kHz
							•	
pput Supply Current PWM I _{SUPPLY} (V _{DD} & I _{OUT} = 0 mA, V _{IN} = 3.6 V (not switching, FB = 0		: FD (ND)		450	750			
PSM	(V _{DD} & V _{IN})	$I_{OUT} = 0$ mA, $V_{IN} = 3.6$ V (not switching, FB = GND)			400		μΑ	
Shutdown Supply Current I _{SD}		SD = Low				2		
า	•					•	•	
erature ^c	T _{J(S/D)}					165		
	,					20		۰C
	PWM PSM PSM PSM PSM PSM PSM PSM PChannel N-Channel PWM PSM PSM PSM PSM PSM PSM PSM PSM PSM PS	Modef Symbol PWM ILOAD PSM ILOAD PWM PSM PSM PWM PSM ILOAD PSM PWM PSM ILOAD PWM PSM ILOAD PWM PSM ILOAD PWM PSM ILOAD PWM PSM ILOAD PWM PSM ILOAD PWM PSM ILOAD PSM ILOAD PWM PSM ILOAD PSM ILOAD PWM ILOAD PWM ILOAD PSM ILOAD PSM ILOAD ILOAD	Test Conditions -40°C to 85°C, V _{IN} = V _{DD} , L = 2.2 μH, 2.6 V ≤ V _{IN} ≤ 5. PWM	Test Conditions Unless \$\frac{1}{2}\$	$ \begin{array}{ c c c c }\hline r & & & & & & & & & & & & & & & & & & $	$ \begin{array}{ c c c c }\hline r & & & & & & & & & & & & & & & & & & $	$ \begin{array}{ c c c c c }\hline \textbf{Modef} & \textbf{Symbol} & \textbf{Test Conditions Unless Specified} \\ \hline \textbf{Modef} & \textbf{Symbol} & \textbf{Limits} \\ \hline \textbf{Modef} & \textbf{Symbol} & \textbf{Limits} \\ \hline \textbf{Ad°C to 85°C, V_{IN} = V_{DD, C}, C_{IN} = 10 \mu F, C_{OUT} = 4.7 \mu F \\ \hline \textbf{L} = 2.2 \mu H, 2.6 \text{V} \leq \text{V}_{IN} \leq 5.5 \text{V}, R_1 = 11.3 k \Omega, R_2 = 20 k \Omega } \\ \hline \textbf{Mina} & \textbf{Typb} \\ \hline \textbf{DN} & \textbf{I}_{LOAD} & \textbf{V}_{IN} = 3.6 \text{V} \\ \hline \textbf{PSM} & \textbf{I}_{LOAD} & \textbf{V}_{IN} = 3.6 \text{V} \\ \hline \textbf{PSM} & \textbf{V}_{DD} & \textbf{V}_{IN} = 2.6 \text{V}, \textbf{I}_{OUT} = 600 \text{mA} \\ \hline \textbf{PWM} & \textbf{V}_{IN} = 3.6 \text{V} \\ \hline \textbf{PSM} & \textbf{V}_{OUT} = 1.9 \text{V} \otimes 25^{\circ} \text{C} \\ \hline \textbf{PWM} & \textbf{V}_{OUT} = 3.0 \text{W}, \textbf{V}_{IN} = 3.5 \text{V to 5.5 V} \\ \hline \textbf{PSM} & \textbf{V}_{OUT} = 3.0 \text{V}, \textbf{V}_{IN} = 3.5 \text{V to 5.5 V} \\ \hline \textbf{PCAnnnel} & \textbf{I}_{DQH} \\ \hline \textbf{P-Channel} & \textbf{I}_{DQh} \\ \hline \textbf{P-Channel} & \textbf{I}_{DPk} \\ \hline \textbf{PSM} & \textbf{0}.05 \Omega \text{C}_{OUT(ESR)} \\ \hline \textbf{PWM} & \textbf{0}.05 \Omega \text{C}_{OUT(ESR)} \\ \hline \textbf{PWM} & \textbf{V}_{IN} = 3.6 \text{V}, \textbf{V}_{OUT} = 3.3 \text{V} \\ \hline \textbf{I}_{OUT} = 600 \text{mA} \\ \hline \textbf{I}_{OUT} = 30 \text{mA} \\ \hline \textbf{80} \\ \hline \textbf{PSM} & \textbf{0}.05 \Omega \text{C}_{OUT(ESR)} \\ \hline \textbf{PSM} & \textbf{I}_{OUT} = 30 \text{mA} \\ \hline \textbf{0}_{OUT} = 30 $	Test Conditions Unless Specified

- Notes
 a. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
 b. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.

- c. d.
- Guaranteed by design.

 Settling times, t_s, apply after t_{en}.

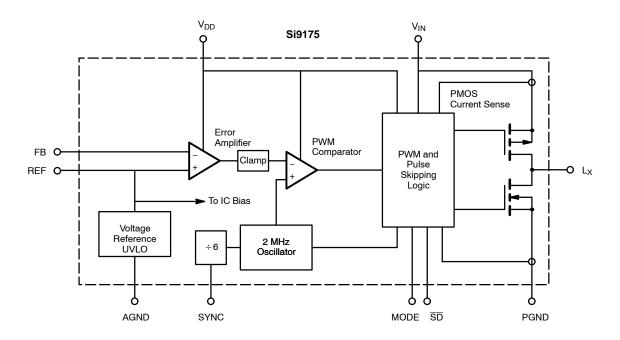

 Bypass is a device mode of operation, in which, the device is in 100% duty cycle. Bypass operation is possible in either PWM or PSM.

 Operating modes are controlled with the MODE pin where Auto mode = MODE = LOW, PWM Mode = MODE = HIGH, and PSM mode = MODE = OPEN.

V**āshay istlic**bhiix共应商

PIN CONFIGURATION

PIN DESCRIPTION				
Pin Number	Name	Function		
1	L _X	Inductor connection		
2	AGND	Low power analog ground		
3	FB	Output voltage feedback		
4	V_{DD}	Input supply voltage for the analog circuit.		
5	REF	Internal reference, no connection should be made to this pin.		
6	MODE	Used to select switching mode of the buck converter PWM/PSM Pin Logic: MODE Pin Operating Mode V _{IN} PWM Open PSM GND AUTO		
7	SD	Logic low disables IC and reduces quiescent current to below 2 μA		
8	SYNC	Converter switching frequency can be synchronized to $^{1}/_{6}$ of the clock frequency at this pin.		
9	V _{IN}	Input supply voltage		
10	PGND	Low impedance power ground		


ORDERING INFORMATION						
MSOP-10			MLP33			
Standard Part Number	Marking	Temperature	Standard Part Number	Lead (Pb)-Free Part Number	Marking	Temperature
Si9175DH-T1	9175	–40 to 85°C	Si9175DM-T1	Si9175DM-T1—E3	9175	−40 to 85°C

Additional voltage options are available.

Eval Kit	Temperature Range	Board
Si9175DB	–40 to 85°C	Surface Mount

FUNCTIONAL BLOCK DIAGRAM

DETAIL DESCRIPTION

General

The Si9175 is a high efficiency synchronous dc-dc converter that is ideally suited for lithium ion battery or three cell alkaline applications, as well as step-down of 3.3-V or 5.0-V supplies. The major blocks of the Si9175 are shown in the Functional Block Diagram. The 0.25- Ω internal MOSFETs switching at a frequency of 2-MHz minimize PC board space while providing high conversion efficiency and performance. The high frequency error-amplifier with built-in loop compensation minimizes external components and provides rapid output settling times of <30 μs . Sensing of the inductor current for control is accomplished internally without power wasting resistors. The switching frequency can be synchronized to an external 13-MHz clock signal.

Start-Up

When voltage is applied to V_{IN} and V_{DD} , the under-voltage lockout (UVLO) circuit prevents the oscillator and control circuitry from turning on until the voltage on the exceeds 2.4 V. With a typical UVLO hysteresis of 0.1 V, the converter operates continuously until the voltage on V_{IN} drops below 2.3 V, whereupon the converter shuts down. This hysteresis prevents false start-stop cycling as the input voltage approaches the UVLO switching threshold. Start-up is always

accomplished in PWM mode to ensure start-up under all load conditions. Switching to other modes of operation occurs according to the state of the MODE pin and the load current. The start-up sequence occurs after \overline{SD} switches from LOW to HIGH with V_{IN} applied, or after V_{IN} rises above the UVLO threshold and \overline{SD} is a logic HIGH.

Mode Control (MODE)

The MODE pin allows the user to control the mode of operation or to enable the Si9175 to automatically optimize the mode of operation according to load current. There are three different modes of operation as controlled by the MODE pin. Switching waveforms are shown in the Typical Switching Waveform sections, page 9.

PWM Mode (MODE pin = HIGH)

With the MODE pin in the logic HIGH condition, the Si9175 operates as a 2-MHz fixed frequency voltage mode converter. A NMOS synchronous rectification MOSFET transistor provides very high conversion efficiency for large load currents by minimizing the conduction losses. PWM mode provides low output ripple, fast transient response, and switching frequency synchronization. Output load currents can range from 0 to 600 mA.

Vashay Sinconix共应商

VISHAY

The error amplifier and comparator control the duty cycle of the PMOS MOSFET to continuously force the REF pin and FB pin voltages to be equal. As the input-to-output voltage difference drops, the duty cycle of the PMOS MOSFET can reach 100% to allow system designers to extract the maximum stored energy from the battery. The dropout voltage is 190 mV at 600 mA.

During each cycle, the PMOS switch current is limited to a maximum of 1.5 A (typical) thereby protecting the IC while continuing to force maximum current into the load.

Pulse Skipping Mode (MODE pin = OPEN)

By leaving the MODE pin open-circuit, the converter runs in pulse skipping mode (PSM). In PSM mode the oscillator continues to operate, but switching only occurs if the FB pin voltage is below the REF voltage at the start of each clock cycle. Clock cycles are skipped thereby reducing the switching frequency to well below 100 kHz and minimizing switching losses for improved efficiency at loads under 150 mA. Although PSM mode switching frequency varies with line and load conditions, the minimum PSM frequency will be kept above 20 kHz for load currents of 30 mA or more to prevent switching noise from reaching the audio frequency range.

Each time the PMOS switch is turned on, the inductor current is allowed to reach 300 mA. Once achieved, the PMOS switch is turned off and the NMOS switch is turned on in the normal manner. However, unlike PWM mode, the NMOS switch, turns off as the switch current approaches zero current to maximize efficiency. The PMOS switch remains on continuously (100% duty cycle) when the input-voltage-to-output-voltage difference is low enabling maximum possible energy extraction from the battery.

PSM mode is recommend for load currents of 150 mA or less.

Auto Mode

When the MODE pin grounded, the converter is set to Auto mode. Switching between PWM mode and PSM modes takes place automatically without an external control signal. For heavy load operation, the converter will operate in PWM mode to achieve maximum efficiency. When delivering light load currents, the converter operates in PSM mode to conserve power. The switchover threshold between the two modes is determined by the peak inductor current, which is 300 mA

nominal. There is hysteresis in the switchover threshold to provide smooth operation. Thus, the mode PSM-to-PWM mode switchover current for increasing load currents is higher than that of PWM-to-PSM mode switchover for decreasing load currents.

Oscillator Synchronization (SYNC)

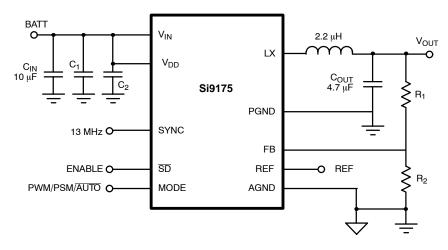
The internal oscillator provides for a fixed 2-MHz switching frequency. In order to minimize system noise, the oscillator of the Si9175 can be synchronized to an external clock, typically an ac-coupled 13-MHz sine wave. An on-chip divide-by-six circuit sets the converter switching frequency to 2.167 MHz in this mode. The frequency lock range of the synchronization circuitry is typically 20%. If synchronization is not required, the SYNC pin must be tied to GND permitting the internal oscillator to oscillate at 2 MHz.

Dynamic Output Voltage Control (REF)

The Si9175 is designed with an adjustable output voltage which has a change of V_{FB} to $V_{IN} - V_{DROP}$. Vout is defined according to the following relationship:

$$V_{OUT} = \left(1 + \frac{R_1}{R_2}\right) \times V_{FB}$$

Converter Shutdown (SD pin)


With logic LOW level on the \overline{SD} pin, the Si9175 is shutdown. Shutdown reduces current consumption to less than 2- μ A by shutting off all of the internal circuits. Both the PMOS and NMOS transistors are turned off. A logic HIGH enables the IC to start up as described in "Start-up" section.

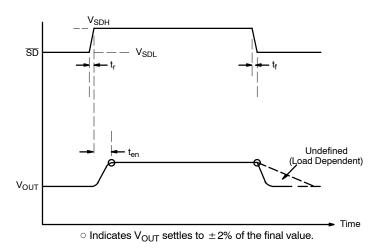
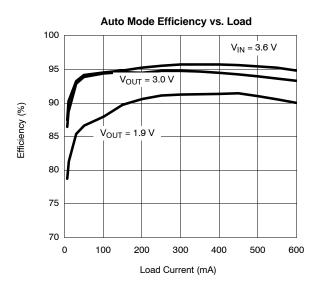
Thermal Shutdown

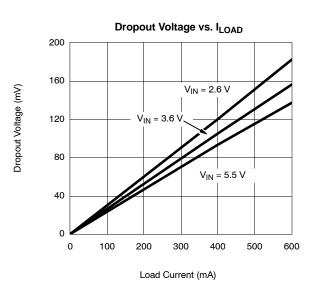
The Si9175 includes thermal shutdown circuitry, which turns off the regulator when the junction temperature exceeds 165°C. Once the junction temperature drops below 145°C, the regulator is enabled. If the condition causing the over temperature, the Si9175 begins thermal cycling, turning the regulator on and off in response to junction temperature. Restart from a thermal shutdown condition is the same as described in the "Start-up" section.

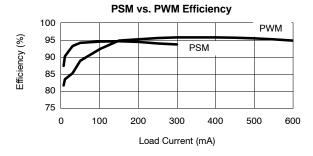
APPLICATIONS CIRCUIT

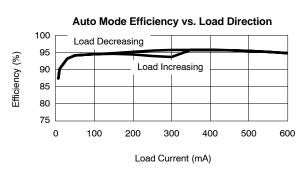
 C_{IN} = 10 μF, Ceramic, Murata GRM42-2X5R106K16 $C_1,\,C_2$ = 0.01 μF, Vishay VJ0603Y 104KXXAT C_{OUT} = 4.7 μF, Ceramic, Murata GRM42-6X5R475K16 R_1 = 8.2 kΩ, Vishay CRCW06031132F R_2 = 20 kΩ, Vishay CRCW06032002F L_1 = 2.2 μH, Toko A914BYW-2R2M

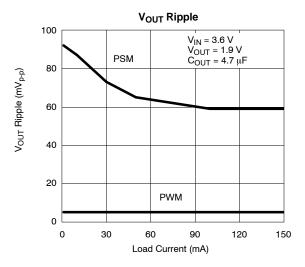
TYPICAL CHARACTERISTICS

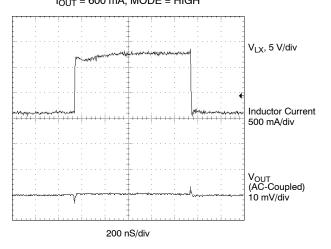



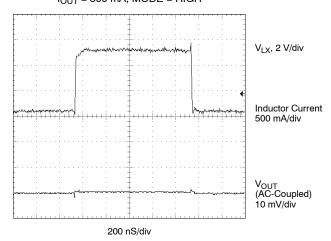

Figure 1. PWM Mode V_{OUT} Settling


Vasinay 1Siliconix共应商

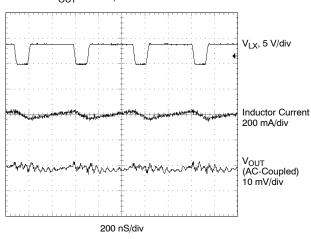


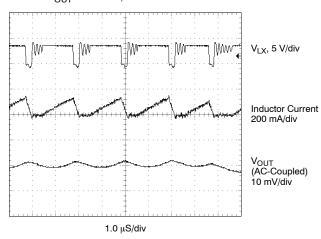

TYPICAL CHARACTERISTICS

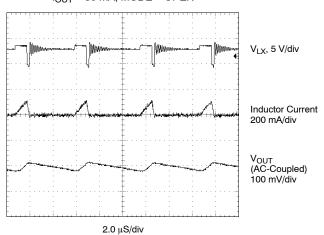




TYPICAL SWITCHING WAVEFORMS (VIN = 3.6 V, VOUT = 3.0 V)

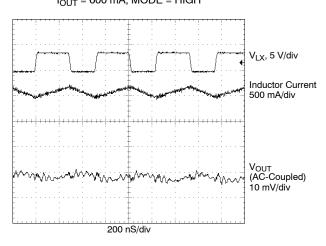

PWM mode Heavy-Load Switching Waveforms, $I_{OUT} = 600$ mA, MODE = HIGH


PWM Mode Medium-Load Switching Waveforms, $I_{OUT} = 300$ mA, MODE = HIGH

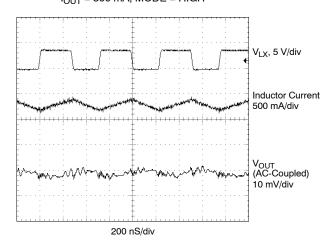

PWM Mode Light-Load Switching Waveforms, $I_{OUT} = 0$ mA, MODE = HIGH

PSM Mode Light-Load Switching Waveforms, $I_{OUT} = 150$ mA, MODE = OPEN

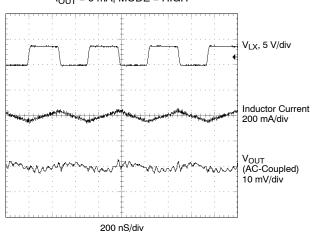
PSM Mode Light-Load Switching Waveforms, $I_{OUT} = 30 \text{ mA, MODE} = \text{OPEN}$

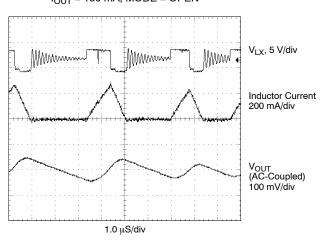


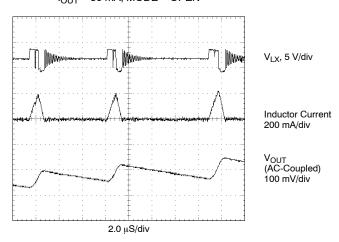
Vashay ISTPebnix 共应商



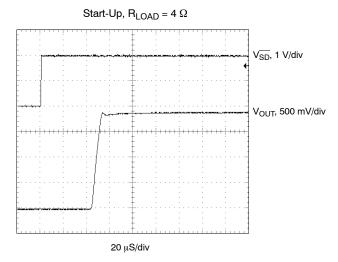
TYPICAL WAVEFORMS (VIN = 3.6 V, VOUT = 1.9 V)

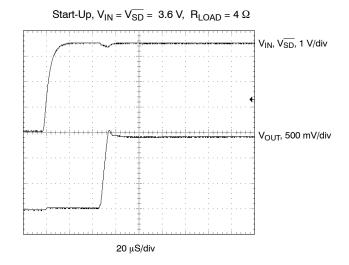

PWM Mode Heavy-Load Switching Waveforms, $I_{OUT} = 600$ mA, MODE = HIGH

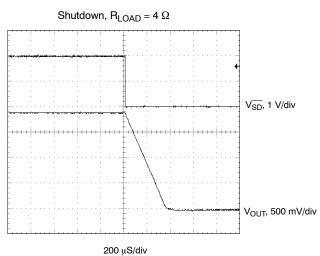

PWM Mode Medium-Load Switching Waveforms, $I_{OUT} = 300 \text{ mA}, \text{MODE} = HIGH$

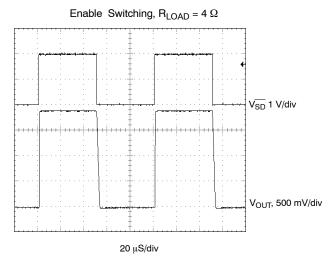

PWM Mode Light-Load Switching Waveforms, $I_{OUT} = 0$ mA, MODE = HIGH

PSM Mode Light-Load Switching Waveforms, I_{OUT} = 150 mA, MODE = OPEN

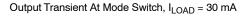

PSM Mode Light-Load Switching Waveforms, $I_{OUT} = 30 \text{ mA}, \text{MODE} = \text{OPEN}$

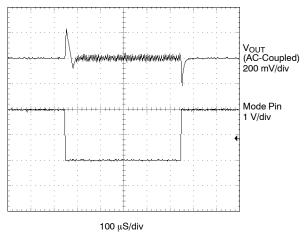




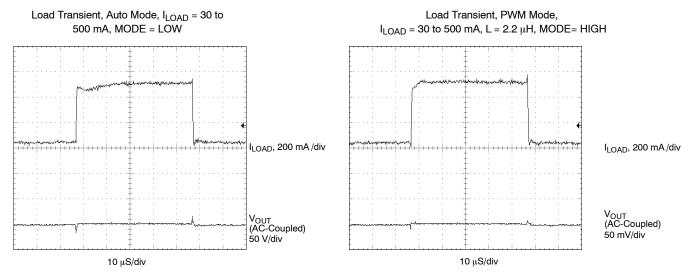


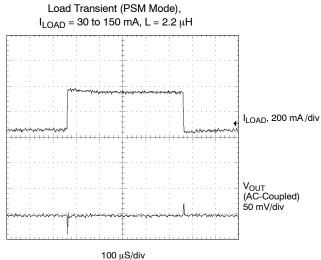
TYPICAL START-UP AND SHUTDOWN TRANSIENT WAVEFORMS (V_{IN} = 3.6 V, V_{OUT} = 1.9 V)





TYPICAL MODE SWITCH TRANSIENT WAVEFORM





V**āshay ISIPcbhix**共应商

TYPICAL LOAD TRANSIENT WAVEFORMS (VIN = 3.6 V, VOUT = 1.9 V)

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Revision: 18-Jul-08

Document Number: 91000 www.vishay.com