Ultra－Low 0.4Ω
 Dual SPDT Analog Switch with Overshoot

The NLAS52231 is a dual SPDT analog switch with overshoot capability on the signal lines．It is ideally suited for audio applications that require very low R_{ON} values for maximum signal transfer．The overshoot feature included in the NLAS52231 allows analog signals on the COM，NO or NC lines to swing safely above V_{CC} without incurring significant leakage．This feature provides added protection against undesirable leakage or damage to the device in the event that an incoming audio signal spikes above its nominal level．

The NLAS52231 features a wide V_{CC} operating range， $1.65 \mathrm{~V}-4.5 \mathrm{~V}$ ．It is capable of interfacing with control input select line voltages， $\mathrm{V}_{\text {IN }}$ ，as low as 1.3 V for a V_{CC} of 3.0 V ．The NLAS52231 is offered in a very small $1.4 \mathrm{~mm} \times 1.8 \mathrm{~mm} 10-$ pin UQFN package．

Features

－Ultra－Low $\mathrm{R}_{\mathrm{ON}}: 0.4 \Omega$ at $\mathrm{V}_{\mathrm{CC}}=4.2 \mathrm{~V}$
－Overshoot Capability： $\mathrm{V}_{\text {IS }}$ can safely rise up to 1.1 V above V_{CC}
－ V_{CC} Range： 1.65 V to 4.5 V
－ $1.4 \times 1.8 \times 0.55 \mathrm{~mm}$ UQFN10
－These are $\mathrm{Pb}-$ Free Devices

Typical Applications

－Mobile Phones
－Portable Devices

Figure 1．Applications Diagram

ON Semiconductor ${ }^{\circledR}$
http：／／onsemi．com
MARKING
DIAGRAM
CASE 488AT

FUNCTION TABLE

IN 1，2	NO 1， $\mathbf{2}$	NC 1，2
0	OFF	ON
1	ON	OFF

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet．

QFN PIN \#	Symbol	Name and Function
$2,5,7,10$	NC1 to NC2, NO1 to NO2	Independent Channels
4,8	IN1 and IN2	Controls
3,9	COM1 and COM2	Common Channels
6	GND	Ground (V)
1	VCC 2	Positive Supply Voltage

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Positive DC Supply Voltage	-0.5 to +5.5	V
$\mathrm{~V}_{\mathrm{IS}}$	Analog Input Voltage ($\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$, or $\left.\mathrm{V}_{\mathrm{COM}}\right)$	$-0.5 \leq \mathrm{V}_{\mathrm{IS}} \leq \mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{~V}_{\mathrm{IN}}$	Digital Select Input Voltage	$-0.5 \leq \mathrm{V}_{\mathrm{IN}} \leq+5.5$	V
$\mathrm{I}_{\text {anl1 }}$	Continuous DC Current from COM to NC/NO	± 300	mA
$\mathrm{I}_{\text {anl-pk } 1}$	Peak Current from COM to NC/NO, 10 Duty Cycle (Note 1)	± 500	mA
$\mathrm{I}_{\text {clmp }}$	Continuous DC Current into COM/NO/NC with Respect to V_{CC} or GND	± 100	mA

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability

1. Defined as 10% ON, 90% OFF Duty Cycle.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
$V_{\text {CC }}$	DC Supply Voltage	1.65	4.5	V
$\mathrm{V}_{\text {IN }}$	Digital Select Input Voltage Overshoot Tolerance	GND	4.5	V
$\mathrm{V}_{\text {IS }}$	Analog Input Voltage (NC, NO, COM)	GND	$\mathrm{V}_{\mathrm{CC}}+1.1$	V
$\mathrm{T}_{\text {A }}$	Operating Temperature Range	-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r},} \mathrm{t}_{\mathrm{f}}$	$\begin{array}{ll}\text { Input Rise or Fall Time, SELECT } & \mathrm{V}_{\mathrm{CC}}=1.6 \mathrm{~V}-2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}-4.5 \mathrm{~V}\end{array}$		$\begin{aligned} & 20 \\ & 10 \end{aligned}$	ns/V

ESD PROTECTION

Symbol	Parameter	Value	Unit
ESD	Human Body Model (HBM)	3.0	kV
ESD	Machine Model (MM)	100	V

Symbol	Parameter	Condition	V_{cc}	Guaranteed Limit		Unit
				$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
V_{IH}	Minimum High-Level Input Voltage, Select Inputs		$\begin{aligned} & 3.0 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.6 \end{aligned}$	$\begin{aligned} & \hline 1.3 \\ & 1.6 \end{aligned}$	V
$\mathrm{V}_{\text {IL }}$	Maximum Low-Level Input Voltage, Select Inputs		$\begin{aligned} & 3.0 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.6 \end{aligned}$	V
I_{IN}	Maximum Input Leakage Current, Select Inputs	$\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$ or GND	4.3	± 0.1	± 1.0	$\mu \mathrm{A}$
IofF	Power Off Leakage Current	$\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$ or GND	0	± 0.5	± 2.0	$\mu \mathrm{A}$
I_{Cc}	Maximum Quiescent Supply Current (Note 2)	Select and $\mathrm{V}_{\text {IS }}=\mathrm{V}_{\text {CC }}$ or GND	1.65 to 4.5	± 1.0	± 2.0	$\mu \mathrm{A}$

2. Guaranteed by design. Resistance measurements do not include test circuit or package resistance.

NLAS52231 DC ELECTRICAL CHARACTERISTICS - ANALOG SECTION

Symbol	Parameter	Condition	V_{cc}	Guaranteed Maximum Limit				Unit
				$25^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
				Min	Max	Min	Max	
Ron (NC)	NC "ON" Resistance (Note 3)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{GND} \text { to } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{IN}} \mathrm{I} \leq 100 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.3 \end{aligned}$		$\begin{aligned} & 0.46 \\ & 0.43 \end{aligned}$		$\begin{aligned} & \hline 0.56 \\ & 0.53 \end{aligned}$	Ω
RON (NO)	NO "ON" Resistance (Note 3)	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{IH}} \\ \mathrm{~V}_{\mathrm{IS}}=\mathrm{GND} \text { to } \mathrm{V}_{\mathrm{CC}} \\ \mathrm{I}_{\mathrm{IN}} \leq 100 \mathrm{~mA} \end{array}$	$\begin{aligned} & 3.0 \\ & 4.3 \end{aligned}$		$\begin{aligned} & 0.38 \\ & 0.35 \end{aligned}$		$\begin{aligned} & \hline 0.48 \\ & 0.43 \end{aligned}$	Ω
$\mathrm{R}_{\text {FLAT }}(\mathrm{NC})$	NC_On-Resistance Flatness (Notes 3, 4)	$\begin{aligned} & \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=0 \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.3 \end{aligned}$		$\begin{aligned} & 0.15 \\ & 0.15 \end{aligned}$		$\begin{aligned} & \hline 0.17 \\ & 0.18 \end{aligned}$	Ω
RFLAT (NO)	NO_On-Resistance Flatness (Notes 3, 4)	$\begin{aligned} & \hline \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=0 \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.3 \end{aligned}$		$\begin{aligned} & 0.12 \\ & 0.14 \end{aligned}$		$\begin{aligned} & \hline 0.14 \\ & 0.16 \end{aligned}$	Ω
$\Delta \mathrm{R}_{\text {ON }}$	On-Resistance Match Between Channels (Notes 3 and 5)	$\begin{array}{\|l} \hline \mathrm{V}_{\text {IS }}=1.5 \mathrm{~V} ; \\ \mathrm{I}_{\text {COM }}=100 \mathrm{~mA} \\ \mathrm{~V}_{\text {IS }}=2.2 \mathrm{~V} ; \\ \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA} \end{array}$	$\begin{aligned} & \hline 3.0 \\ & 4.3 \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.05 \end{aligned}$		$\begin{aligned} & \hline 0.05 \\ & 0.05 \end{aligned}$	Ω
$\mathrm{I}_{\mathrm{NC} \text { (OFF) }}$ $I_{\text {NO(OFF) }}$	NC or NO Off Leakage Current (Note 3)	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$ V_{NO} or $\mathrm{V}_{\mathrm{NC}}=0.3 \mathrm{~V}$ $\mathrm{V}_{\text {COM }}=4.0 \mathrm{~V}$	4.3	-10	10	-100	100	nA
${ }^{\text {COMM (ON) }}$	COM ON Leakage Current (Note 3)	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH} $\mathrm{V}_{\mathrm{NO}} 0.3 \mathrm{~V}$ or 4.0 V with V_{NC} floating or $\mathrm{V}_{\mathrm{NC}} 0.3 \mathrm{~V}$ or 4.0 V with V_{NO} floating $\mathrm{V}_{\mathrm{COM}}=0.3 \mathrm{~V}$ or 4.0 V	4.3	-10	10	-100	100	nA

3. Guaranteed by design. Resistance measurements do not include test circuit or package resistance.
4. Flatness is defined as the difference between the maximum and minimum value of On-resistance as measured over the specified analog signal ranges.
5. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}(\mathrm{MAX})}-\mathrm{R}_{\mathrm{ON}(\mathrm{MIN})}$ between NC1 and NC2 or between NO1 and NO2.

Symbol	Parameter	Test Conditions	V_{cc} (V)	$\mathrm{V}_{\text {IS }}$ (V)	Guaranteed Maximum Limit					Unit
					$25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
					Min	Typ*	Max	Min	Max	
ton	Turn-On Time	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ (Figures 3 and 4)	2.3-4.5	1.5			50		60	ns
tofF	Turn-Off Time	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ (Figures 3 and 4)	2.3-4.5	1.5			30		40	ns
$\mathrm{t}_{\text {BBM }}$	Minimum Break-Before-Make Time	$\begin{aligned} & \mathrm{V}_{\mathrm{IS}}=3.0 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \text { (Figure 2) } \end{aligned}$	3.0	1.5	2	15				ns

		Typical @ 25, $\mathbf{v}_{\mathbf{c C}}=\mathbf{3 . 6} \mathbf{~ V}$	
C_{IN}	Control Pin Input Capacitance	3.5	pF
$\mathrm{C}_{\mathrm{NO} / \mathrm{NC}}$	NO, NC Port Capacitance	39	pF
$\mathrm{C}_{\mathrm{COM}}$	COM Port Capacitance When Switch is Enabled	85	pF

*Typical Characteristics are at $25^{\circ} \mathrm{C}$.

ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)

Symbol	Parameter	Condition	v_{cc}(V)	$25^{\circ} \mathrm{C}$	Unit
				Typical	
BW	Maximum On-Channel -3 dB Bandwidth or Minimum Frequency Response	$\mathrm{V}_{\text {IN }}$ centered between V_{CC} and GND (Figure 5)	1.65-4.5	36	MHz
$\mathrm{V}_{\text {ONL }}$	Maximum Feed-through On Loss	$\begin{aligned} & \mathrm{V}_{\text {IN }}=0 \mathrm{dBm} @ 100 \mathrm{kHz} \text { to } 50 \mathrm{MHz} \\ & \mathrm{~V}_{\text {IN }} \text { centered between } \mathrm{V}_{\mathrm{CC}} \text { and } \mathrm{GND} \text { (Figure 5) } \end{aligned}$	1.65-4.5	-0.06	dB
VISO	Off-Channel Isolation	$\mathrm{f}=100 \mathrm{kHz} ; \mathrm{V}_{\mathrm{IS}}=1 \mathrm{~V}$ RMS; $\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$ $\mathrm{V}_{\text {IN }}$ centered between V_{CC} and GND (Figure 5)	1.65-4.5	-62	dB
Q	Charge Injection Select Input to Common I/O	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{GND}, \mathrm{R}_{\mathrm{IS}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}$ $Q=C_{L} \times D V_{\text {OUT }}$ (Figure 6)	1.65-4.5	53	pC
THD	Total Harmonic Distortion THD + Noise	$\begin{aligned} & \mathrm{F}_{\text {IS }}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\text {gen }}=600 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{~V}_{\text {IS }}=2.0 \mathrm{VRMS} \end{aligned}$	3.0	0.03	\%
VCT	Channel-to-Channel Crosstalk	$\mathrm{f}=100 \mathrm{kHz} ; \mathrm{V}_{I S}=1.0 \mathrm{~V} \text { RMS, } \mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega$ $\mathrm{V}_{\mathrm{IN}} \text { centered between } \mathrm{V}_{\mathrm{CC}} \text { and } \mathrm{GND} \text { (Figure 5) }$	1.65-4.5	-88	dB

6. Off-Channel Isolation = $20 \log 10\left(\mathrm{~V}_{\mathrm{COM}} / \mathrm{V}_{\mathrm{NO}}\right), \mathrm{V}_{\mathrm{COM}}=$ output, $\mathrm{V}_{\mathrm{NO}}=$ input to off switch.

Figure 2. $\mathrm{t}_{\mathrm{BBM}}$ (Time Break-Before-Make)

Figure 3. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

Figure 4. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

NLAS52231

查询＂NLAS52231MU R2G＂供应商

Channel switch control／s test socket is normalized．Off isolation is measured across an off channel．On loss is the bandwidth of an On switch． $\mathrm{V}_{\text {ISO }}$ ，Bandwidth and $\mathrm{V}_{\text {ONL }}$ are independent of the input signal direction．
$\mathrm{V}_{\text {ISO }}=$ Off Channel Isolation $=20 \log \left(\frac{\mathrm{~V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz
$\mathrm{V}_{\mathrm{ONL}}=$ On Channel Loss $=20 \log \left(\frac{\mathrm{~V}_{\mathrm{OUT}}}{\mathrm{V}_{\mathrm{IN}}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz to 50 MHz
Bandwidth（BW）＝the frequency 3 dB below $\mathrm{V}_{\mathrm{ONL}}$
$\mathrm{V}_{\mathrm{CT}}=$ Use $\mathrm{V}_{\text {ISO }}$ setup and test to all other switch analog input／outputs terminated with 50Ω

Figure 5．Off Channel Isolation／On Channel Loss（BW）／Crosstalk （On Channel to Off Channel）／V ${ }_{\text {ONL }}$

Figure 6．Charge Injection：（Q）

NLAS52231

Figure 7. Cross Talk vs. Frequency $@ V_{c c}=4.3$ V

Figure 9. Total Harmonic Distortion

Figure 11. On-Resistance vs. Input Voltage @ $\mathrm{V}_{\mathrm{Cc}}=4.3 \mathrm{~V}$

FREQUENCY (MHz)
Figure 8. Bandwidth vs. Frequency

Figure 10. On-Resistance vs. Input Voltage @ $\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}$

Figure 12. On-Resistance vs. Input Voltage

查询＂NLA S52231MU R2G＂供应商

DETAILED DESCRIPTION

Overshoot Protection

The NLAS52231 features overshoot protection on the signal lines．This allows input signals to exceed the V_{CC} voltage of the switch up to 1.1 V ．This is useful in applications where the input signal has a wide dynamic range and may at times exceed the typical signal swing．It is
also helpful in designs that pair a moderate signal swing range with a fairly low operating voltage．Up to 1.1 V above V_{CC} ，the NLAS52231 switch will pass signals without distortion and maintain all specified performance characteristics．

Figure 13.

ORDERING INFORMATION

Device	Package	Shipping †
NLAS52231MUR2G	UQFN10 （Pb－Free）	$3000 /$ Tape \＆Reel

\dagger For information on tape and reel specifications，including part orientation and tape sizes，please refer to our Tape and Reel Packaging Specifications Brochure，BRD8011／D．

PACKAGE DIMENSIONS

UQFN10 1．4x1．8，0．4P
CASE 488AT－01
ISSUE A

＊For additional information on our Pb －Free strategy and soldering details，please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual，SOLDERRM／D．

[^0]
PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor
O．Box 5163，Denver，Colorado 80217 USA
Phone：303－675－2175 or 800－344－3860 Toll Free USA／Canada Fax：303－675－2176 or 800－344－3867 Toll Free USA／Canada Email：orderlit＠onsemi．com

N．American Technical Support：800－282－9855 Toll Free USA／Canada
Europe，Middle East and Africa Technical Support： Phone： 421337902910
Japan Customer Focus Center
Phone：81－3－5773－3850

ON Semiconductor Website：www．onsemi．com Order Literature：http：／／www．onsemi．com／orderlit

For additional information，please contact your loca Sales Representative

[^0]: ON Semiconductor and ON are registered trademarks of Semiconductor Components Industries，LLC（SCILLC）．SCILLC reserves the right to make changes without further notice to any products herein．SCILLC makes no warranty，representation or guarantee regarding the suitability of its products for any particular purpose，nor does SCILLC assume any liability arising out of the application or use of any product or circuit，and specifically disclaims any and all liability，including without limitation special，consequential or incidental damages． ＂Typical＂parameters which may be provided in SCILLC data sheets and／or specifications can and do vary in different applications and actual performance may vary over time．All operating parameters，including＂Typicals＂must be validated for each customer application by customer＇s technical experts．SCILLC does not convey any license under its patent rights nor the rights of others．SCILLC products are not designed，intended，or authorized for use as components in systems intended for surgical implant into the body，or other applications intended to support or sustain life，or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur．Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application，Buyer shall indemnify and hold SCILLC and its officers，employees，subsidiaries，affiliates， and distributors harmless against all claims，costs，damages，and expenses，and reasonable attorney fees arising out of，directly or indirectly，any claim of personal injury or death associated with such unintended or unauthorized use，even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part．SCILLC is an Equa Opportunity／Affirmative Action Employer．This literature is subject to all applicable copyright laws and is not for resale in any manner．

