14-s 查德 BINGER ARP DE-TOUR PER WITH OSCILLATOR

FEATURES

- All active components on chip
- RC or crystal oscillator configuration
- Output capability: standard (except for R_{TC} and C_{TC})
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT4060 are high-speed Si-gate CMOS devices and are pin compatible with "4060" of the "4000B" series. They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT4060 are 14-stage ripple-carry counter/dividers and oscillators with three oscillator terminals (RS, R_{TC} and C_{TC}), ten buffered outputs (Q₃ to Q₉ and Q₁₁ to Q₁₃) and an overriding asynchronous master reset (MR).

The oscillator configuration allows design of either RC or crystal oscillator circuits. The oscillator may be replaced by an external clock signal at input RS. In this case keep the other oscillator pins (R_{TC} and C_{TC}) floating.

The counter advances on the negative-going transition of RS. A HIGH level on MR resets the counter (Q_1 to Q_2 and Q_1 to Q_1 3 = LOW), independent of other input conditions.

In the HCT version, the MR input is TTL compatible, but the RS input has CMOS input switching levels and can be driven by a TTL output by using a pull-up resistor to V_{CC} .

0.44001	DADAMETER	CONDITIONS	TYF		
SYMBOL	PARAMETER	CONDITIONS	нс	нст	UNIT
t _{PHL} / t _{PLH} t _{PHL}	propagation delay RS to Q3 Q _n to Q _{n+1} MR to Q _n	C _L = 15 pF V _{CC} = 5 V	31 6 17	31 6 18	ns ns ns
f _{max}	maximum clock frequency		87	88	MHz
CI	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per package	notes 1, 2 and 3	40	40	ρF

GND = 0 V;
$$T_{amb}$$
 = 25 °C; t_r = t_f = 6 ns

Note

1. CPD is used to determine the dynamic power dissipation (PD in μ W):

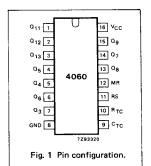
PD = CPD x
$$VCC^2$$
 x $f_1 + \Sigma$ (CL x VCC^2 x f_0) where:

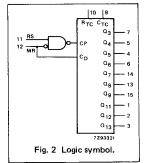
fi = input frequency in MHz CL

C_L = output load capacitance in pF V_{CC} = supply voltage in V

 f_0 = output frequency in MHz $\Sigma (C_L \times V_{CC}^2 \times f_0)$ = sum of outputs

2. For HC the condition is V_I = GND to V_{CC}
For HCT the condition is V_I = GND to V_{CC} - 1.5 V


3. For formula on dynamic power dissipation see next page.


PACKAGE OUTLINES


16-lead DIL; plastic (SOT38Z). 16-lead mini-pack; plastic (SO16; SOT109A).

PIN DESCRIPTION

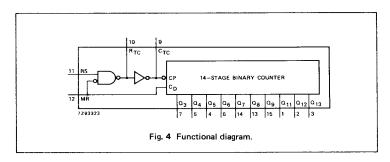
PIN NO.	SYMBOL	NAME AND FUNCTION
1, 2, 3	Q ₁₁ to Q ₁₃	counter outputs
7, 5, 4, 6, 14, 13, 15	Q3 to Q9	counter outputs
8	GND	ground (0 V)
9	CTC	external capacitor connection
10	RTC	external resistor connection
11	RS	clock input/oscillator pin
12	MR	master reset
16	Vcc	positive supply voltage

DYNAMIC POWER DISSIPATION FOR 74HC

PARAMETER	V _{CC}	TYPICAL FORMULA FOR P _D (μW) (note 1)
total dynamic power dissipation when using the on-chip oscillator (PD)	2.0 4.5 6.0	$\begin{array}{c} C_{PD} \times f_{osc} \times V_{CC^2} + \Sigma (C_L \times V_{CC^2} \times f_o) + 2C_t \times V_{CC^2} \times f_{osc} + 60 \times V_{CC} \\ C_{PD} \times f_{osc} \times V_{CC^2} + \Sigma (C_L \times V_{CC^2} \times f_o) + 2C_t \times V_{CC^2} \times f_{osc} + 1750 \times V_{CC} \\ C_{PD} \times f_{osc} \times V_{CC^2} + \Sigma (C_L \times V_{CC^2} \times f_o) + 2C_t \times V_{CC^2} \times f_{osc} + 3800 \times V_{CC} \end{array}$

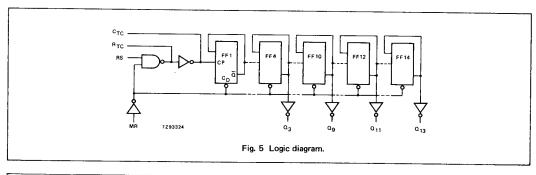
GND = 0 V; T_{amb} = 25 °C

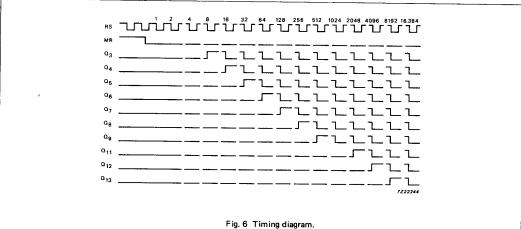
DYNAMIC POWER DISSIPATION FOR 74HCT


PARAMETER	V _{CC}	TYPICAL FORMULA FOR P _D (μW) (note 1)
total dynamic power dissipation when using the on-chip oscillator (PD)	4.5	$C_{PD} \times f_{osc} \times V_{CC^2} + \Sigma (C_L \times V_{CC^2} \times f_o) + 2C_t \times V_{CC^2} \times f_{osc} + 1750 \times V_{CC}$

GND = 0 V; T_{amb} = 25 °C

Notes


1. Where: $f_{O} = \text{output frequency in MHz}$ $f_{OSC} = \text{oscillator frequency in MHz}$ $\Sigma (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$


 $\begin{array}{ll} \textbf{C}_L & = \text{output load capacitance in pF} \\ \textbf{C}_t & = \text{timing capacitance in pF} \\ \textbf{V}_{CC} = \text{supply voltage in V} \end{array}$

APPLICATIONS

- Control counters
- Timers
- Frequency dividers
- Time-delay circuits

DC CHARACTERISTICS FOR 74HC

Output capability: standard (except for R $_{TC}$ and C $_{TC}$ I $_{CC}$ category: MSI

Voltages are referenced to GND (ground = 0 V)

					r _{amb} (°C)				TEST CONDITIONS			
DVMDOL	DADAMETER	74HC								Vcc	Vı	OTHER	
SYMBOL	PARAMETER	+25			-40 to +85 -		-40 to +125		UNIT	٧	• 1	41.1.2.	
		min.	typ.	max.	min.	max.	min.	max.					
v _{IH}	HIGH level input voltage MR input	1.5 3.15 4.2	1.3 2.4 3.1		1.5 3.15 4.2		1.5 3.15 4.2		V	2.0 4.5 6.0			
VIL	LOW level input voltage MR input		0.8 2.1 2.8	0.5 1.35 1.8		0.5 1.35 1.8		0.5 1.35 1.8	v	2.0 4.5 6.0			
v _{IH}	HIGH level input voltage RS input	1.7 3.6 4.8			1.7 3.6 4.8		1.7 3.6 4.8		v	2.0 4.5 6.0			
VIL	LOW level input voltage MR input			0.3 0.9 1.2		0.3 0.9 1.2		0.3 0.9 1.2	v	2.0 4.5 6.0			
		3.98 5.48			3.84 5.34		3.7 5.2		v	4.5 6.0	RS=GND and MR=GND	-I _O = 2.6 mA -I _O = 3.3 mA	
.,	HIGH level output voltage	3.98 5.48			3.84 5.34		3.7 5.2		v	4.5 6.0	RS=V _{CC} and MR=V _{CC}	I _O = 0.65 mA I _O = 0.85 mA	
VOH	R _{TC} output	1.9 4.4 5.9	2.0 4.5 6.0		1.9 4.4 5.9		1.9 4.4 5.9		v	2.0 4.5 6.0	RS=GND and MR=GND	-I _O = 20 μA -I _O = 20 μA -I _O = 20 μA	
		1.9 4.4 5.9	2.0 4.5 6.0		1.9 4.4 5.9		1.9 4.4 5.9		v	2.0 4.5 6.0	RS=V _{CC} and MR=V _{CC}	-I _O = 20 μA -I _O = 20 μA -I _O = 20 μA	
Voн	HIGH level output voltage CTC output	3.98 5.48			3.84 5.34		3.7 5.2		V	4.5 6.0	RS=V _{IH} and MR=V _{IL}	-1 _O = 3.2 mA -1 _O = 4.2 mA	
Vон	HIGH level output voltage except R _{TC} output	1.9 4.4 5.9	2.0 4.5 6.0		1.9 4.4 5.9		1.9 4.4 5.9		v	2.0 4.5 6.0	VIH or VIL	$-I_O = 20 \mu A$ $-I_O = 20 \mu A$ $-I_O = 20 \mu A$	
Vон	HIGH level output voltage except R _{TC} and C _{TC} outputs	3.98 5.48			3.84 5.34		3.7 5.2		v	4.5 6.0	V _{IH} or V _{IL}	-I _O = 4.0 mA -I _O = 5.2 mA	
.,	LOW level output voltage			0.26 0.26		0.33 0.33		0.4 0.4		4.5 6.0	RS=V _{CC} and MR=GND	I _O = 2.6 mA I _O = 3.3 mA	
V _{OL}	R _{TC} output		0 0 0	0.1 0.1 0.1		0.1 0.1 0.1		0.1 0.1 0.1	v	2.0 4.5 6.0	RS=V _{CC} and MR=GND	$I_O = 20 \mu A$ $I_O = 20 \mu A$ $I_O = 20 \mu A$	
v _{OL}	LOW level output voltage CTC output			0.26 0.26		0.33 0.33		0.4 0.4	v	4.5 6.0	RS=V _{IL} and MR=V _{IH}	I _O = 3.2 mA I _O = 4.2 mA	

		T _{amb} (°C)								TEST CONDITIONS			
		74HC							UNIT	Vcc	Vı	OTHER	
SYMBOL	PARAMETER	+25			-40 to +85		-40 to +125		O.E.	v C C	*1		
		min.	typ.	max.	min.	max.	min.	max.				i	
V _{OL}	LOW level output voltage except RTC output		0 0 0	0.1 0.1 0.1		0.1 0.1 0.1		0.1 0.1 0.1	V	2.0 4.5 6.0	V _{IH} or V _{IL}	I _O = 20 μA I _O = 20 μA I _O = 20 μA	
VOL	LOW level output voltage except RTC and CTC outputs			0.26 0.26		0.33 0.33		0.4 0.4	٧	4.5 6.0	VIH or VIL	1 _O = 4.0 mA 1 _O = 5.2 mA	
±l ₁	input leakage current		!	0.1		1.0		1.0	μΑ	6.0	V _{CC} or GND		
Icc	quiescent supply current			8.0		80.0		160.0	μΑ	6.0	V _{CC} or GND	1 _O = 0	

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

					T _{amb} (°C)				TEST CONDITIONS		
SYMBOL	PARAMETER		74HC									
01111101	TANAMETEN	+25			-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.]			
tPHL/ tPLH	propagation delay RS to Q ₃		99 36 29	300 60 51		375 75 64		450 90 77	ns	2.0 4.5 6.0	Fig. 12	
t _{PHL} / t _{PLH}	propagation delay Q_n to Q_{n+1}		22 8 6	80 16 14		100 20 17		120 24 20	ns	2.0 4.5 6.0	Fig. 14	
^t PHL	propagation delay MR to Ω _n		55 20 16	175 35 30		220 44 37		265 53 45	ns	2.0 4.5 6.0	Fig. 13	
^t THL [/] ^t TLH	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Fig. 12	
tW	clock pulse width RS; HIGH or LOW	80 16 14	17 6 5		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig. 12	
t₩	master reset pulse width MR; HIGH	80 16 14	25 9 7		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig. 13	
^t rem	removal time MR to RS	100 20 17	28 10 8		125 25 21		150 30 26		ns	2.0 4.5 6.0	Fig. 13	
f _{max}	maximum clock pulse frequency	6.0 30 35	26 80 95		4.8 24 28		4.0 20 24		MHz	2.0 4.5 6.0	Fig. 12	

DC CHARACTERISTICS FOR 74HCT

Output capability: standard (except for $R_{\mbox{\scriptsize TC}}$ and $C_{\mbox{\scriptsize TC}}$)

ICC category: MSI

Voltages are referenced to GND (ground = 0 V)

				т	amb (°	C)					TEST CONDITIONS			
					74HC	т			UNIT	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	OTHER		
SYMBOL	PARAMETER	+25			-40 to +8540 to			o+125	UNIT	V _{CC}	Vı	OTHER		
		min.	typ.	max.	min.	max.	min.	max.						
V _{IH}	HIGH level input voltage	2.0			2.0		2.0		v	4.5 to 5.5		note 2		
VIL	LOW level input voltage			0.8		0.8		0.8	v	4.5 to 5.5		note 2		
		3.98			3.84		3.7		v	4.5	RS=GND and MR=GND	-I _O = 2.6 mA		
	III CII level autrut valtaga	3.98			3.84		3.7		v	4.5	RS=V _{CC} and MR=V _{CC}	-I _O = 0.65 mA		
Voн	HIGH level output voltage R _{TC} output	4.4	4.5		4.4		4.4		v	4.5	RS=GND and MR=GND	-1 _O = 20 μA		
		4.4	4.5		4.4		4.4		v	4.5	RS=V _{CC} and MR=V _{CC}	-I _O = 20 μA		
V _{OH}	HIGH level output voltage CTC output	3.98			3.84		3.7		v	4.5	RS=V _{1H} and MR=V _{IL}	-I _O = 3.2 mA		
V _{OH}	HIGH level output voltage except R _{TC} output	4.4	4.5		4.4		4.4		v	4.5	VIH or VIL	-1 _O = 20 μA		
v _{OH}	HIGH level output voltage except RTC and CTC outputs	3.98			3.84		3.7		v	4.5	V _{IH} or V _{IL}	-I _O = 4.0 mA		
	LOW level output voltage			0.26		0.33		0.4	v	4.5	RS=V _{CC} and MR=GND	I _O = 2.6 mA		
VOL	R _{TC} output		0	0.1		0.1		0.1	v	4.5	RS=V _{CC} and MR=GND	Ι _Ο = 20 μΑ		
VOL	LOW level output voltage CTC output			0.26		0.33		0.4	V	4.5	RS=V _{IL} and MR=V _{IH}	I _O = 3.2 mA		
VOL	LOW level output voltage except RTC output		0	0.1		0.1		0.1	v	4.5	V _{1H} or V _{IL}	ΙΟ = 20 μΑ		
VOL	LOW level output voltage except RTC and CTC outputs			0.26		0.33		0.4	V	4.5	AIT ot AIH	I _O = 4.0 mA		
±1 ₁	input leakage current			0.1		1.0		1.0	μΑ	5.5	V _{CC} or GND			

DC CHARACTERISTICS FOR 74HCT (continued)

Voltages are referenced to GND (ground = 0 V)

SYMBOL PARAME		T _{amb} (°C)								TEST CONDITIONS			
	PARAMETER	74HCT							UNIT				
31MBOL	PARAMETER		+25			-40 to +85		-40 to +125		Vcc	V _i	OTHER	
		min.	typ.	max.	min.	max.	min.	max.					
lcc	quiescent supply current			8.0		80.0		160.0	μΑ	5.5	V _{CC} or GND	I _O = 0	
ΔI _{CC}	additional quiescent supply current per input pin for unit load coefficient is 1 (note 1)		100	360		450		490	μΑ	4.5 to 5.5	V _{CC} -2.1 V	other inputs at VCC or GND;	

Notes to HCT types

 The value of additional quiescent supply current (\(\Delta\C_C\)) for a unit load of 1 is given here.
 To determine \(\Delta\C_C\) per input, multiply this value by the unit load coefficient shown in the table below. 2. Only input MR (pin 12) has TTL input switching levels for the HCT versions.

INPUT	UNIT LOAD COEFFICIENT
MR	0.40

AC CHARACTERISTICS FOR 74HCT

GND = 0 V; $t_r = t_f = 6 \text{ ns}$; $C_L = 50 \text{ pF}$

		T _{amb} (°C) 74HCT								TEST CONDITIONS		
SYMBOL	PARAMETER											
OTMBOL	TANAMETER	+25			-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.				
t _{PHL} / t _{PLH}	propagation delay RS to Q3		33	66		83		99	ns	4.5	Fig. 12	
tPHL/ tPLH	propagation delay Q _n to Q _{n+1}		8	16		20		24	ns	4.5	Fig. 14	
^t PHL	propagation delay MR to Q _n		21	44		55		66	ns	4.5	Fig. 13	
tTHL/ tTLH	output transition time		7	15		19		22	ns	4.5	Fig. 12	
tw	clock pulse width RS; HIGH or LOW	16	6		20		24		ns	4.5	Fig. 12	
t₩	master reset pulse width MR; HIGH	16	6		20		24		ns	4.5	Fig. 13	
^t rem	removal time MR to RS	26	13		33		39		ns	4.5	Fig. 13	
f _{max}	maximum clock pulse frequency	30	80		24		20		MHz	4.5	Fig. 12	

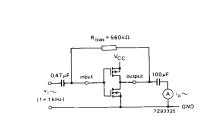
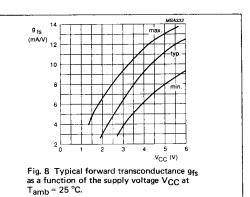
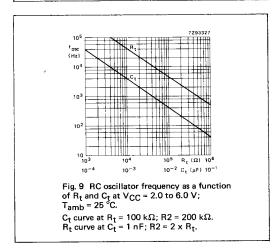
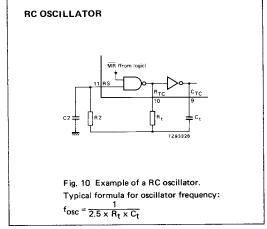





Fig. 7 Test set-up for measuring forward transconductance $g_{fs} = di_{O}/dv_i$ at v_{O} is constant (see also graph Fig. 8); MR = LOW.

TIMING COMPONENT LIMITATIONS

The oscillator frequency is mainly determined by R_tC_t , provided $R2\approx 2R_t$ and $R2C2\ll R_tC_t$. The function of R2 is to minimize the influence of the forward voltage across the input protection diodes on the frequency. The stray capacitance C2 should be kept as small as possible. In consideration of accuracy, C_t must be larger than the inherent stray capacitance. R_t must be larger than the "ON" resistance in series with it, which typically is $280~\Omega$ at $V_{CC}=2.0~V$, $130~\Omega$ at $V_{CC}=4.5~V$ and $100~\Omega$ at $V_{CC}=6.0~V$. The recommended values for these components to maintain agreement with the typical oscillation formula are:

Ct > 50 pF, up to any practical value,

 $10~k\Omega < R_{t} < 1~M\Omega.$

In order to avoid start-up problems, $R_t \ge 1 \text{ k}\Omega$.

TYPICAL CRYSTAL OSCILLATOR

In Fig. 11, R2 is the power limiting resistor. For starting and maintaining oscillation a minimum transconductance is necessary, so R2 should not be too large. A practical value for R2 is 2.2 k Ω .

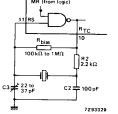


Fig. 11 External components connection for a crystal oscillator.

AC WAVEFORMS

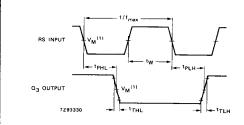
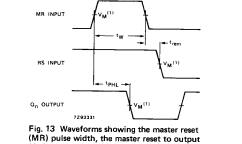



Fig. 12 Waveforms showing the clock (RS) to output (Q3) propagation delays, the clock pulse width, the output transition times and the maximum clock frequency.

(MR) pulse width, the master reset to output (Qn) propagation delays and the master reset to clock (RS) removal time.

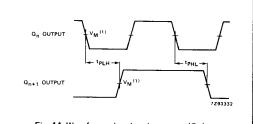


Fig. 14 Waveforms showing the output (Q_n) to Q_{n+1} propagation delays.

Note to AC waveforms

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V.