www.ti.com

SCDS253-SEPTEMBER 2007

FEATURES

- Overshoot and Undershoot Voltage Protection
- Specified Break-Before-Make Switching
- Low ON-State Resistance (10 Ω)
- Control Inputs Are 5-V Tolerant
- Low Charge Injection
- Excellent ON-Resistance Matching
- Low Total Harmonic Distortion (THD)

- 1.8-V to 5.5-V Single-Supply Operation
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
- 2000-V Human-Body Model (A114-B, Class II)
- 1000-V Charged-Device Model (C101)
- 300-V Machine Model (A115-A)

APPLICATIONS

- Sample-and-Hold Circuit
- Battery-Powered Equipments

- Audio and Video Signal Routing
- Communication Circuits

DESCRIPTION/ORDERING INFORMATION

The TS5A623157 is a dual single-pole, double-throw (SPDT) analog switch designed to operate from 1.65 V to 5.5 V. This device can handle both digital and analog signals. Signals up to V+ (peak) can be transmitted in either direction.

The TS5A623157 senses overshoot and undershoot events at the I/Os and responds by preventing voltage differentials from developing and turning the switch on.

ORDERING INFORMATION

$\mathbf{T}_{\mathbf{A}}$	PACKAGE $^{(1)(2)}$		ORDERABLE PART NUMBER	TOP-SIDE MARKING
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	VSSOP (MSOP-10) - DGS	Tape and reel	TS5A623157DGSR	35R
	QFN - RSE	Tape and reel	TS5A623157RSER	PREVIEW

(1) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.
(2) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

FUNCTION TABLE

IN	NC TO COM, COM TO NC	NO TO COM, COM TO NO
L	ON	OFF
H	OFF	ON

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SUMMARY OF CHARACTERISTICS

Configuration	2：1 multiplexer／demultiplexer（ $1 \times$ SPDT）
Number of channels	2
ON－state resistance（ $\mathrm{r}_{\text {on }}$ ）	10Ω
ON －state resistance match（ $\Delta \mathrm{r}_{\text {on }}$ ）	0.15Ω
ON－state resistance flatness（ $\mathrm{ron}_{\text {onflat）}}$ ）	2Ω
Turn－on／turn－off time（ $\mathrm{t}_{\text {ON }} / \mathrm{t}_{\text {OFF }}$ ）	$5 \mathrm{~ns} / 3.4 \mathrm{~ns}$
Break－before－make time（ $\mathrm{t}_{\mathrm{BBM}}$ ）	0.5 ns
Charge injection（ Q_{C} ）	5 pC
Bandwidth（BW）	371 MHz
OFF isolation（ $\mathrm{O}_{\text {ISO }}$ ）	－61 dB at 10 MHz
Crosstalk（ $\mathrm{X}_{\text {TALK }}$ ）	-61 dB at 10 MHz
Total harmonic distortion（THD）	0．06\％
Leakage current（ $\mathrm{I}_{\text {NO（OFF）}} / /_{\text {NC（OFF）}}$ ）	$\pm 1 \mu \mathrm{~A}$
Power－supply current（ I_{+}）	$1.2 \mu \mathrm{~A}$
Undershoot protection	－2 V
Overshoot protection	$\mathrm{V}_{+}+2 \mathrm{~V}$
Package options	10－pin VSSOP（DGS），10－pin QFN（RSE）

Absolute Minimum and Maximum Ratings ${ }^{(1)(2)}$

over operating free－air temperature range（unless otherwise noted）

			MIN	MAX	UNIT
V_{+}	Supply voltage range ${ }^{(3)}$		－0．5	6.5	V
V_{NC} V_{NO} $\mathrm{V}_{\mathrm{COM}}$	Analog voltage range ${ }^{(3)(4)(5)}$		－0．5	$\mathrm{V}_{+}+0.5$	V
$\mathrm{I}_{\text {I／OK }}$	Analog port diode current	$\mathrm{V}_{+}<\mathrm{V}_{\mathrm{NC}}, \mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{COM}}<0$		± 50	mA
$\begin{array}{\|l\|} \hline I_{\mathrm{NC}} \\ I_{\mathrm{NO}} \\ I_{\mathrm{COM}} \\ \hline \end{array}$	On－state switch current	$\mathrm{V}_{\mathrm{NC}}, \mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\text {COM }}=0$ to V_{+}		± 50	mA
$\mathrm{V}_{\text {IN }}$	Digital input voltage range ${ }^{(3)(4)}$		－0．5	6.5	V
I_{1}	Digital input clamp current	$\mathrm{V}_{1}<0$		－50	mA
$\begin{array}{\|l\|} \hline \begin{array}{l} I+ \\ \mathrm{I}_{\mathrm{GND}} \end{array} \\ \hline \end{array}$	Continuous current through V_{+}or GND			± 100	mA
$\mathrm{T}_{\text {stg }}$	Storage temperature range		－65	150	${ }^{\circ} \mathrm{C}$

（1）Stresses beyond those listed under＂absolute maximum ratings＂may cause permanent damage to the device．These are stress ratings only，and functional operation of the device at these or any other conditions beyond those indicated under＂recommended operating conditions＂is not implied．Exposure to absolute－maximum－rated conditions for extended periods may affect device reliability．
（2）The algebraic convention，whereby the most negative value is a minimum and the most positive value is a maximum．
（3）All voltages are with respect to ground，unless otherwise specified．
（4）The input and output voltage ratings may be exceeded if the input and output clamp－current ratings are observed．
（5）This value is limited to 5.5 V maximum．

Package Thermal Impedance

				UNIT
$\theta_{J A}$	Package thermal impedance ${ }^{(1)}$	DGS package	165	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		RSE package	243	

[^0]www.ti.com
WITH UNDERSHOOT/OVERSHOOT VOLTAGE PROTECTION

Electrical Characteristics for 5-V Supply

$\mathrm{V}_{+}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS		TA	V_{+}	MIN	TYP	MAX	UNIT
Analog Switch									
Analog signal range	$\begin{gathered} \mathrm{V}_{\mathrm{COM}}, \mathrm{~V}_{\mathrm{NO}}, \\ \mathrm{~V}_{\mathrm{NC}} \end{gathered}$					0		V_{+}	V
Voltage undershoot	$\mathrm{V}_{\text {IKU }}$	$0 \geq\left(I_{\text {NC }}, I_{\text {NO }}\right.$, or $\left.I_{\text {COM }}\right) \geq-50 \mathrm{~mA}$			5.5 V		-2		V
Peak ON-state resistance	$r_{\text {peak }}$	$\begin{aligned} & 0 \leq\left(\mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}\right) \leq \mathrm{V}_{+}, \\ & \mathrm{I}_{\mathrm{COM}}=-30 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 14	$25^{\circ} \mathrm{C}$	4.5 V		4.6	11	Ω
				Full				13	
ON-state resistance	$\mathrm{r}_{\text {on }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0, \\ & \mathrm{I}_{\mathrm{COM}}=30 \mathrm{~mA} \end{aligned}$	Switch ON, See Figure 14	$25^{\circ} \mathrm{C}$	4.5 V		4	6.5	Ω
				Full				8	
		$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=2.4 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=-30 \mathrm{~mA} \end{aligned}$		$25^{\circ} \mathrm{C}$			4	8	
				Full				10	
		$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=4.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=-30 \mathrm{~mA} \end{aligned}$		$25^{\circ} \mathrm{C}$			5.5	10	
				Full				12	
ON-state resistance match between channels	$\Delta r_{\text {on }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=3.15 \mathrm{~V} \text {, } \\ & \mathrm{I}_{\mathrm{COM}}=-30 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 14	$25^{\circ} \mathrm{C}$	4.5 V		0.1	0.14	Ω
				Full			0.15		
ON-state resistance flatness	$\mathrm{r}_{\text {on(flat) }}$	$\begin{aligned} & 0 \leq\left(V_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}\right) \leq \mathrm{V}_{+}, \\ & \mathrm{I}_{\mathrm{COM}}=-30 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 14	$25^{\circ} \mathrm{C}$	4.5 V		1.5	2	Ω
				Full				4	
NC, NO OFF leakage current	$I_{\text {NC(OFF) }}$, $\mathrm{I}_{\mathrm{NO}(\mathrm{OFF})}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=0 \text { to } \mathrm{V}_{+}, \\ & \mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{+} \text {to } 0 \end{aligned}$	Switch OFF, See Figure 15	$25^{\circ} \mathrm{C}$	5.5 V		1	20	nA
				Full				150	
NC, NO ON leakage current	$\mathrm{I}_{\mathrm{NC}(\mathrm{ON})}$, $\mathrm{I}_{\mathrm{NO}(\mathrm{ON})}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=0 \text { to } \mathrm{V}_{+}, \\ & \mathrm{V}_{\mathrm{COM}}=\text { Open, } \end{aligned}$	Switch ON, See Figure 16	$25^{\circ} \mathrm{C}$	5.5 V		1	20	nA
				Full				150	
COM ON leakage current	$\mathrm{I}_{\text {COM(ON }}$	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=$ Open, $\mathrm{V}_{\text {COM }}=0$ to V_{+},	Switch ON, See Figure 16	$25^{\circ} \mathrm{C}$	5.5 V		1	20	nA
				Full				150	
Digital Control Input (IN)									
Input logic high	V_{IH}			Full		$\mathrm{V}_{+} \times 0.7$		5.5	V
Input logic low	V_{IL}			Full		0		$\times 0.3$	V
Input leakage current	$\mathrm{I}_{\mathrm{HH}}, \mathrm{I}_{\text {IL }}$	$\mathrm{V}_{1}=5.5 \mathrm{~V}$ or 0		$25^{\circ} \mathrm{C}$	5.5 V		0.1	10	nA
				Full				30	

Electrical Characteristics for 5-V Supply (continued)
$\mathrm{V}_{+}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

Electrical Characteristics for 3.3-V Supply

$\mathrm{V}_{+}=3 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS		TA	V_{+}	MIN	TYP	MAX	UNIT
Analog Switch									
Analog signal range	$\begin{gathered} \mathrm{V}_{\mathrm{COM}}, \mathrm{~V}_{\mathrm{NO}}, \\ \mathrm{~V}_{\mathrm{NC}} \end{gathered}$							V_{+}	V
Voltage undershoot	$\mathrm{V}_{\text {IKU }}$	$0 \geq\left(l_{\text {NC }}, I_{\text {NO }}\right.$, or $\left.I_{\text {Сом }}\right) \geq-50 \mathrm{~mA}$			3.6 V				V
Peak ON-state resistance	$\mathrm{r}_{\text {peak }}$	$\begin{array}{ll} 0 \leq\left(V_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}\right) \leq \mathrm{V}_{+}, & \text {Switch ON, } \\ \mathrm{I}_{\text {COM }}=-24 \mathrm{~mA}, & \text { See Figure } 14 \end{array}$		$25^{\circ} \mathrm{C}$	3 V		8.9	14	Ω
				Full				18	
ON-state resistance	$r_{\text {on }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0, \\ & \mathrm{I}_{\mathrm{COM}}=24 \mathrm{~mA} \end{aligned}$	Switch ON, See Figure 14	$25^{\circ} \mathrm{C}$	3 V		5.4	8	Ω
				Full				10	
		$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=3 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=-24 \mathrm{~mA} \end{aligned}$		$25^{\circ} \mathrm{C}$			7.4	12	
				Full				15	
ON-state resistance match between channels	$\Delta r_{\text {on }}$	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=2.1 \mathrm{~V}$, \quad Switch ON , $\mathrm{I}_{\text {Сом }}=-24 \mathrm{~mA}, \quad$ See Figure 14		$25^{\circ} \mathrm{C}$	3 V		0.1	0.2	Ω
				Full				0.2	
ON-state resistance flatness	$\mathrm{r}_{\text {on(flat) }}$	$\begin{aligned} & 0 \leq\left(\mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}\right) \leq \mathrm{V}_{+}, \\ & \mathrm{I}_{\mathrm{COM}}=-24 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 14	$25^{\circ} \mathrm{C}$	3 V		2.8	4	Ω
				Full				7	
NC, NO OFF leakage current	$\mathrm{I}_{\text {NC(OFF) }}$, $\mathrm{I}_{\mathrm{NO}(\mathrm{OFF})}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=0 \text { to } \mathrm{V}_{+}, \\ & \mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{+} \text {to } 0 \end{aligned}$	Switch OFF, See Figure 15	$25^{\circ} \mathrm{C}$	3.6 V		0.5	10	nA
				Full				100	
NC, NO ON leakage current	${ }^{\mathrm{I} C(O N)}$, $\mathrm{I}_{\mathrm{NO}(\mathrm{ON})}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=0 \text { to } \mathrm{V}_{+}, \\ & \mathrm{V}_{\mathrm{COM}}=\text { Open, } \end{aligned}$	Switch ON, See Figure 16	$25^{\circ} \mathrm{C}$	3.6 V		0.5	10	nA
				Full				100	
COM ON leakage current	$\mathrm{I}_{\text {COM(ON }}$	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=$ Open, $\mathrm{V}_{\text {COM }}=0$ to V_{+},	Switch ON, See Figure 16	$25^{\circ} \mathrm{C}$	3.6 V		0.5	10	nA
				Full				100	
Digital Control Input (IN)									
Input logic high	V_{IH}			Full		$\mathrm{V}_{+} \times 0.7$		5.5	V
Input logic low	V_{IL}			Full				$\times 0.3$	V
Input leakage current	$I_{\text {IH }}, \mathrm{I}_{\text {IL }}$	$\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$ or 0		$25^{\circ} \mathrm{C}$	3.6 V		0.1	10	nA
				Full				20	

Electrical Characteristics for 3.3-V Supply (continued)
$\mathrm{V}_{+}=3 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS		TA	V_{+}	MIN	TYP	MAX	UNIT
Dynamic									
Turn-on time	ton	$\begin{aligned} & V_{\text {COM }}=V_{+} \text {or GND, } \\ & R_{L}=500 \Omega, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF},$ See Figure 17	$25^{\circ} \mathrm{C}$	3.3 V	1	4.7	9.0	ns
				Full	$\begin{aligned} & 3 \mathrm{~V} \text { to } \\ & 3.6 \mathrm{~V} \end{aligned}$	1		10.0	
Turn-off time	toff	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{+} \text {or GND, } \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega, \end{aligned}$	$C_{L}=50 \mathrm{pF} \text {, }$ See Figure 17	$25^{\circ} \mathrm{C}$	3.3 V	1	3.2	6.3	ns
				Full	$\begin{aligned} & 3 \mathrm{~V} \text { to } \\ & 3.6 \mathrm{~V} \end{aligned}$	1		7.0	
Output voltage during undershoot	$\mathrm{V}_{\text {OUTU }}$	See Figure 24				2.5	-0.3		V
Output voltage during overshoot	$\mathrm{V}_{\text {OUto }}$	See Figure 24					+ 0.3	2	V
Break-beforemake time	$\mathrm{t}_{\text {BBM }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+} / 2, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF},$ See Figure 18	$25^{\circ} \mathrm{C}$	3.3 V	0.5	7	17	ns
				Full	$\begin{aligned} & 3 \mathrm{~V} \text { to } \\ & 3.6 \mathrm{~V} \end{aligned}$	0.5		19.5	
Charge injection	Q_{C}	$\begin{aligned} & \mathrm{V}_{\mathrm{GEN}}=0, \\ & \mathrm{R}_{\mathrm{GEN}}=0, \end{aligned}$	$C_{L}=0.1 \mathrm{nF},$ See Figure 22	$25^{\circ} \mathrm{C}$	3.3 V		75		pC
NC, NO OFF capacitance	$\mathrm{C}_{\mathrm{NC}(\mathrm{OFF})}$, $\mathrm{C}_{\mathrm{NO}(\text { OFF })}$	$\mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+} \text {or }$ GND, Switch OFF,	See Figure 16	$25^{\circ} \mathrm{C}$	3.3 V	5			pF
NC, NO ON capacitance	$\mathrm{C}_{\mathrm{NC}(\mathrm{ON})}$, $\mathrm{C}_{\mathrm{NO}(\mathrm{ON})}$	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+}$or GND, Switch ON,	See Figure 16	$25^{\circ} \mathrm{C}$	3.3 V		14.5		pF
COM ON capacitance	$\mathrm{C}_{\text {Com(ON })}$	$\begin{aligned} & \mathrm{V}_{\mathrm{com}}=\mathrm{V}_{+} \text {or GND, } \\ & \text { Switch ON, } \end{aligned}$	See Figure 16	$25^{\circ} \mathrm{C}$	3.3 V		14.5		pF
Digital input capacitance	C_{1}	$\mathrm{V}_{1}=\mathrm{V}_{+}$or GND,	See Figure 16	$25^{\circ} \mathrm{C}$	3.3 V		3.5		pF
Bandwidth	BW	$R_{L}=50 \Omega,$ Switch ON,	See Figure 19	$25^{\circ} \mathrm{C}$	3.3 V		370		MHz
OFF isolation	OIso	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=10 \mathrm{MHz}, \end{aligned}$	Switch OFF, See Figure 20	$25^{\circ} \mathrm{C}$	3.3 V		-60		dB
Crosstalk	$\mathrm{X}_{\text {TALK }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=10 \mathrm{MHz}, \end{aligned}$	Switch ON, See Figure 21	$25^{\circ} \mathrm{C}$	3.3 V		-60		dB
Total harmonic distortion	THD	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \end{aligned}$	$\begin{aligned} & \mathrm{f}=20 \mathrm{~Hz} \text { to } \\ & 20 \mathrm{kHz}, \\ & \text { See Figure } 23 \end{aligned}$	$25^{\circ} \mathrm{C}$	3.3 V		0.1		\%
Supply									
Positive supply current	I_{+}	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{+}$or GND,	Switch ON or OFF	$25^{\circ} \mathrm{C}$	3.6 V		0.05	0.5	$\mu \mathrm{A}$
				Full				0.75	

Electrical Characteristics for 2.5-V Supply

$\mathrm{V}_{+}=2.3 \mathrm{~V}$ to $2.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS		TA	V_{+}	MIN	TYP	MAX	UNIT
Analog Switch									
Analog signal range	$\underset{\mathrm{COM},}{\mathrm{~V}_{\mathrm{NC}}},$					0		V_{+}	V
Voltage undershoot	$\mathrm{V}_{\text {IKU }}$	$0 \mathrm{~mA} \geq\left(\mathrm{I}_{\mathrm{NC}}, I_{\mathrm{NO}}\right.$, or $\left.\mathrm{I}_{\text {com }}\right) \geq-50 \mathrm{~mA}$			2.7 V				V
Peak ON-state resistance	$\mathrm{r}_{\text {peak }}$	$\begin{aligned} & 0 \leq\left(\mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}\right) \leq \mathrm{V}_{+}, \\ & \mathrm{I}_{\mathrm{COM}}=-8 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 14	$25^{\circ} \mathrm{C}$	2.3 V		13.9	30	Ω
				Full				35	
ON-state resistance	$r_{\text {on }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0, \\ & \mathrm{I}_{\mathrm{COM}}=8 \mathrm{~mA} \end{aligned}$	Switch ON, See Figure 14	$25^{\circ} \mathrm{C}$	2.3 V		6.6	8.5	Ω
				Full				12	
		$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=2.3 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=-8 \mathrm{~mA} \end{aligned}$		$25^{\circ} \mathrm{C}$			8.9	18	
				Full				25	
ON-state resistance match between channels	$\Delta r_{\text {on }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.6 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=-8 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 14	$25^{\circ} \mathrm{C}$	2.3 V		0.05	0.3	Ω
				Full			0.5		
ON-state resistance flatness	$\mathrm{r}_{\text {on(flat) }}$	$\begin{aligned} & 0 \leq\left(\mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}\right) \leq \mathrm{V}_{+}, \\ & \mathrm{I}_{\mathrm{COM}}=-8 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 14	$25^{\circ} \mathrm{C}$	2.3 V		5	15	Ω
				Full				20	
NC, NO OFF leakage current	$I_{\text {NC(OFF) }}$, $\mathrm{I}_{\mathrm{NO}(\mathrm{OFF})}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=0 \text { to } \mathrm{V}_{+}, \\ & \mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{+} \text {to } 0, \end{aligned}$	Switch OFF, See Figure 15	$25^{\circ} \mathrm{C}$	2.7 V		0.1	10	nA
				Full				100	
NC, NO ON leakage current	${ }^{\mathrm{I} C(O N),}$ $\mathrm{I}_{\mathrm{NO}(\mathrm{ON})}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=0 \text { to } \mathrm{V}_{+}, \\ & \mathrm{V}_{\mathrm{COM}}=\text { Open, } \end{aligned}$	Switch ON, See Figure 16	$25^{\circ} \mathrm{C}$	2.7 V		0.1	10	nA
				Full				10	
COM ON leakage current	$\mathrm{I}_{\text {COM(ON }}$	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=$ Open, $\mathrm{V}_{\text {COM }}=0$ to V_{+},	Switch ON, See Figure 16	$25^{\circ} \mathrm{C}$	2.7 V		0.1	10	nA
				Full				100	
Digital Control Input (IN)									
Input logic high	V_{IH}			Full		$V_{+} \times 0.75$		5.5	V
Input logic low	$\mathrm{V}_{\text {IL }}$			Full		0		$\times 0.25$	V
Input leakage current	$\mathrm{I}_{\text {IH }}, \mathrm{I}_{\text {IL }}$	$\mathrm{V}_{1}=5.5 \mathrm{~V}$ or 0		$25^{\circ} \mathrm{C}$	2.7 V		5	10	nA
				Full				20	

Electrical Characteristics for 2．5－V Supply（continued）
$\mathrm{V}_{+}=2.3 \mathrm{~V}$ to $2.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$（unless otherwise noted）

PARAMETER	SYMBOL	TEST CONDITIONS		$\mathrm{T}_{\text {A }}$	V_{+}	MIN	TYP	MAX	UNIT
Dynamic									
Turn－on time	t_{oN}	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{+} \text {or } \mathrm{GND}, \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega, \end{aligned}$	$C_{L}=50 \mathrm{pF},$ See Figure 17	$25^{\circ} \mathrm{C}$	2.5 V	2	6.2	9.6	ns
				Full	$\begin{aligned} & 2.3 \mathrm{~V} \text { to } \\ & 2.7 \mathrm{~V} \end{aligned}$	2		12	
Turn－off time	toff	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{+} \text {or } \mathrm{GND}, \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF},$ See Figure 17	$25^{\circ} \mathrm{C}$	2.5 V	1.5	4.5	7.0	ns
				Full	$\begin{aligned} & 2.3 \mathrm{~V} \text { to } \\ & 2.7 \mathrm{~V} \end{aligned}$	1.5		7.5	
Output voltage during undershoot	$\mathrm{V}_{\text {OUTU }}$	See Figure 24				$\mathrm{V}_{\mathrm{OH}}-0.3$			V
Output voltage during overshoot	$\mathrm{V}_{\text {OUto }}$	See Figure 24				$\mathrm{V}_{\mathrm{OL}}+0.3$		2	V
Break－before－ make time	$t_{\text {BBM }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+} / 2, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF},$ See Figure 18	$25^{\circ} \mathrm{C}$	2.5 V	0.5	10	25	ns
				Full	$\begin{aligned} & 2.3 \mathrm{~V} \text { to } \\ & 2.7 \mathrm{~V} \end{aligned}$	0.5		28.5	
Charge injection	Q_{C}	$\begin{aligned} & \mathrm{V}_{\mathrm{GEN}}=0, \\ & \mathrm{R}_{\mathrm{GEN}}=0, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=0.1 \mathrm{nF},$ See Figure 22	$25^{\circ} \mathrm{C}$	2.5 V		58		pC
NC，NO OFF capacitance	$\mathrm{C}_{\mathrm{NC} \text {（OFF）}}$ ， $\mathrm{C}_{\mathrm{NO} \text {（OFF）}}$	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+}$or GND， Switch OFF，	See Figure 16	$25^{\circ} \mathrm{C}$	2.5 V		5		pF
NC，NO ON capacitance	$\mathrm{C}_{\mathrm{NC}(\mathrm{ON})}$ ， $\mathrm{C}_{\mathrm{NO}(\mathrm{ON})}$	$\mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+} \text {or }$ GND， Switch ON，	See Figure 16	$25^{\circ} \mathrm{C}$	2.5 V		14.5		pF
COM ON capacitance	$\mathrm{C}_{\text {com（ON）}}$	$\mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{+}$or GND， Switch ON，	See Figure 16	$25^{\circ} \mathrm{C}$	2.5 V		14.5		pF
Digital input capacitance	C_{1}	$\mathrm{V}_{1}=\mathrm{V}_{+}$or GND，	See Figure 16	$25^{\circ} \mathrm{C}$	2.5 V		3.5		pF
Bandwidth	BW	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \text { Switch ON, } \end{aligned}$	See Figure 19	$25^{\circ} \mathrm{C}$	2.5 V		367		MHz
OFF isolation	OIso	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=10 \mathrm{MHz}, \end{aligned}$	Switch OFF， See Figure 20	$25^{\circ} \mathrm{C}$	2.5 V		－60		dB
Crosstalk	$\mathrm{X}_{\text {talk }}$	$\begin{aligned} & R_{L}=50 \Omega, \\ & f=10 \mathrm{MHz}, \end{aligned}$	Switch ON， See Figure 21	$25^{\circ} \mathrm{C}$	2.5 V		－60		dB
Total harmonic distortion	THD	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \end{aligned}$	$\begin{aligned} & \mathrm{f}=20 \mathrm{~Hz} \text { to } \\ & 20 \mathrm{kHz}, \end{aligned}$ See Figure 23	$25^{\circ} \mathrm{C}$	2.5 V		0.15		\％
Supply									
Positive supply current	I_{+}	$\mathrm{V}_{1}=\mathrm{V}_{+}$or GND，	Switch ON or OFF	$25^{\circ} \mathrm{C}$	2.7 V		50	100	nA
				Full				550	

Electrical Characteristics for 1．8－V Supply

$\mathrm{V}_{+}=1.65 \mathrm{~V}$ to $1.95 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$（unless otherwise noted）

PARAMETER	SYMBOL	TEST CONDITIONS		TA	V_{+}	MIN	TYP	MAX	UNIT
Analog Switch									
Analog signal range	$\begin{gathered} \mathrm{V}_{\mathrm{COM}}, \mathrm{~V}_{\mathrm{NO}}, \\ \mathrm{~V}_{\mathrm{NC}} \end{gathered}$							V_{+}	V
Voltage undershoot	$\mathrm{V}_{\text {IKU }}$	$0 \geq\left(l_{\text {NC }}, l_{\text {NO }}\right.$ ，or $\left.I_{\text {COM }}\right) \geq-50 \mathrm{~mA}$			1.95 V				V
Peak ON－state resistance	$r_{\text {peak }}$	$0 \leq\left(\mathrm{V}_{\mathrm{NO}}\right.$ or $\left.\mathrm{V}_{\mathrm{NC}}\right) \leq \mathrm{V}_{+}$，Switch ON ， $\mathrm{I}_{\text {COM }}=-4 \mathrm{~mA}, \quad$ See Figure 14		$25^{\circ} \mathrm{C}$	1.65 V		41.1	60	Ω
				Full				120	
ON－state resistance	$\mathrm{r}_{\text {on }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0, \\ & \mathrm{I}_{\mathrm{COM}}=4 \mathrm{~mA} \end{aligned}$	Switch ON， See Figure 14	$25^{\circ} \mathrm{C}$	1.65 V		9.2	15	Ω
				Full				15	
		$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.65 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=-4 \mathrm{~mA} \end{aligned}$		$25^{\circ} \mathrm{C}$			1.8	40	
				Full				45	
ON－state resistance match between channels	$\Delta r_{\text {on }}$	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=1.15 \mathrm{~V}$ ，Switch ON ， $\mathrm{I}_{\text {COM }}=-4 \mathrm{~mA}, \quad$ See Figure 14		$25^{\circ} \mathrm{C}$	1.65 V		0.1	0.6	Ω
				Full				0.8	
ON－state resistance flatness	$\mathrm{r}_{\text {on（lat）}}$	$\begin{aligned} & 0 \leq\left(\mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}\right) \leq \mathrm{V}_{+}, \\ & \mathrm{I}_{\mathrm{COM}}=-4 \mathrm{~mA}, \end{aligned}$	Switch ON， See Figure 14	$25^{\circ} \mathrm{C}$	1.65 V		26.5	80	Ω
				Full				100	
NC，NO OFF leakage current	$I_{\text {NC（OFF）}}$ ， $\mathrm{I}_{\mathrm{NO}(\mathrm{OFF})}$	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=0$ to V_{+}， $\mathrm{V}_{\text {Com }}=\mathrm{V}_{+}$to 0 ，	Switch OFF， See Figure 15	$25^{\circ} \mathrm{C}$	1.95 V		0.05	10	nA
				Full				100	
NC，NO ON leakage current	$\mathrm{I}_{\mathrm{NC}(\mathrm{ON})}$ ， $\mathrm{I}_{\mathrm{NO}(\mathrm{ON})}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=0 \text { to } \mathrm{V}_{+}, \\ & \mathrm{V}_{\mathrm{COM}}=\text { Open, } \end{aligned}$	Switch ON， See Figure 16	$25^{\circ} \mathrm{C}$	1.95 V		0.1	10	$\mu \mathrm{A}$
				Full				100	
COM ON leakage current	$\mathrm{I}_{\text {COM }}(\mathrm{ON})$	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=$ Open， $\mathrm{V}_{\text {COM }}=0$ to V_{+}，	Switch ON， See Figure 16	$25^{\circ} \mathrm{C}$	1.95 V		0.1	10	nA
				Full				100	
Digital Control Input（IN）									
Input logic high	V_{IH}			Full		$V_{+} \times 0.75$		5.5	V
Input logic low	V_{IL}			Full		0		$\times 0.25$	V
Input leakage current	$I_{1 H}, I_{\text {IL }}$	$\mathrm{V}_{1}=5.5 \mathrm{~V}$ or 0		$25^{\circ} \mathrm{C}$	1.95 V		0.05	1	nA
				Full				20	

Electrical Characteristics for 1.8-V Supply (continued)
$\mathrm{V}_{+}=1.65 \mathrm{~V}$ to $1.95 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS		TA	V_{+}	MIN	TYP	MAX	UNIT
Dynamic									
Turn-on time	ton	$\begin{aligned} & \mathrm{V}_{\text {COM }}=\mathrm{V}_{+} \text {or GND, } \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF},$ See Figure 17	$25^{\circ} \mathrm{C}$	1.8 V		9.6	23	ns
				Full	$\begin{gathered} 1.65 \mathrm{~V} \\ \text { to } \\ 1.95 \mathrm{~V} \end{gathered}$			24	
Turn-off time	$\mathrm{t}_{\text {OFF }}$	$\begin{aligned} & \mathrm{V}_{\text {COM }}=\mathrm{V}_{+} \text {or GND, } \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ See Figure 17	$25^{\circ} \mathrm{C}$	1.8 V		6.3	10	ns
				Full	$\begin{gathered} 1.65 \mathrm{~V} \\ \text { to } \\ 1.95 \mathrm{~V} \end{gathered}$			12	
Output voltage during undershoot	$\mathrm{V}_{\text {OUTU }}$	See Figure 24					-0.3		V
Output voltage during overshoot	$\mathrm{V}_{\text {OUto }}$	See Figure 24					+ 0.3		V
Break-beforemake time	$\mathrm{t}_{\text {BBM }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+} / 2, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF},$ See Figure 18	$25^{\circ} \mathrm{C}$	1.8 V	0.5	18	50	ns
				Full	$\begin{gathered} 1.65 \mathrm{~V} \\ \text { to } \\ 1.95 \mathrm{~V} \end{gathered}$	0.5		55	
Charge injection	Q_{C}	$\begin{aligned} & \mathrm{V}_{\mathrm{GEN}}=0, \\ & \mathrm{R}_{\mathrm{GEN}}=0, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=0.1 \mathrm{nF},$ See Figure 22	$25^{\circ} \mathrm{C}$	1.8 V		40		pC
NC, NO OFF capacitance	$\mathrm{C}_{\mathrm{NC}(\mathrm{OFF})}$, $\mathrm{C}_{\mathrm{NO} \text { (OFF) }}$	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+}$or GND, Switch OFF,	See Figure 16	$25^{\circ} \mathrm{C}$	1.8 V		5.0		pF
NC, NO ON capacitance	$\mathrm{C}_{\mathrm{NC}(\mathrm{ON})}$, $\mathrm{C}_{\mathrm{NO}(\mathrm{ON})}$	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+}$or GND, Switch ON,	See Figure 16	$25^{\circ} \mathrm{C}$	1.8 V		14.5		pF
COM ON capacitance	$\mathrm{C}_{\text {Com(ON) }}$	$\mathrm{V}_{\text {COM }}=\mathrm{V}_{+} \text {or GND, }$ Switch ON,	See Figure 16	$25^{\circ} \mathrm{C}$	1.8 V		14.5		pF
Digital input capacitance	C_{1}	$\mathrm{V}_{1}=\mathrm{V}_{+}$or GND,	See Figure 16	$25^{\circ} \mathrm{C}$	1.8 V		3.5		pF
Bandwidth	BW	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \text { Switch ON, } \end{aligned}$	See Figure 19	$25^{\circ} \mathrm{C}$	1.8 V		369		MHz
OFF isolation	$\mathrm{O}_{\text {ISO }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=10 \mathrm{MHz}, \end{aligned}$	Switch OFF, See Figure 20	$25^{\circ} \mathrm{C}$	1.8 V		-60		dB
Crosstalk	$\mathrm{X}_{\text {TALK }}$	$\begin{aligned} & R_{L}=50 \Omega, \\ & f=10 \mathrm{MHz}, \end{aligned}$	Switch ON, See Figure 21	$25^{\circ} \mathrm{C}$	1.8 V		-60		dB
Total harmonic distortion	THD	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \end{aligned}$	$\begin{aligned} & \mathrm{f}=20 \mathrm{~Hz} \text { to } \\ & 20 \mathrm{kHz}, \\ & \text { See Figure } 23 \end{aligned}$	$25^{\circ} \mathrm{C}$	1.8 V		0.4		\%
Supply									
Positive supply current	I_{+}	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{+} \text {or GND, }$	Switch ON or OFF	$25^{\circ} \mathrm{C}$	1.95 V		0.1	50	nA
				Full				400	

PIN DESCRIPTION

PIN NO．	NAME	DESCRIPTION
1	IN1	Digital control to connect COM to NO or NC
2	NO1	Normally open
3	GND	Digital ground
4	NO2	Normally open
5	IN2	Digital control to connect COM to NO or NC
6	COM2	Common
7	NC2	Normally closed
8	V＋	Power supply
9	NC1	Normally closed
10	COM1	Common

PARAMETER DESCRIPTION

SYMBOL	DESCRIPTION
$\mathrm{V}_{\text {Сом }}$	Voltage at COM
V_{NC}	Voltage at NC
V_{NO}	Voltage at NO
$\mathrm{r}_{\text {on }}$	Resistance between COM and NC or COM and NO ports when the channel is ON
$\Delta r_{\text {on }}$	Difference of $r_{\text {on }}$ between channels
$\mathrm{r}_{\text {on（flat）}}$	Difference between the maximum and minimum value of $r_{\text {on }}$ in a channel over the specified range of conditions
$\mathrm{I}_{\text {NC（OFF）}}$	Leakage current measured at the NC port，with the corresponding channel（NC to COM）in the OFF state under worst－case input and output conditions
$\mathrm{I}_{\text {NO（OFF）}}$	Leakage current measured at the NO port，with the corresponding channel（NO to COM）in the OFF state under worst－case input and output conditions
$\mathrm{I}_{\mathrm{NC} \text {（ON）}}$	Leakage current measured at the NC port，with the corresponding channel（NC to COM）in the ON state and the output （COM）being open
$\mathrm{I}_{\mathrm{NO}(\mathrm{ON})}$	Leakage current measured at the NO port，with the corresponding channel（NO to COM）in the ON state and the output （COM）being open
$\mathrm{I}_{\text {com（ON }}$	Leakage current measured at the COM port，with the corresponding channel（NO to COM or NC to COM）in the ON state and the output（ NC or NO ）being open
$\mathrm{V}_{1 \mathrm{H}}$	Minimum input voltage for logic high for the control input（IN）
$\mathrm{V}_{\text {IL }}$	Minimum input voltage for logic low for the control input（IN）
$\mathrm{V}_{\text {IN }}$	Voltage at control input（IN）
$\mathrm{I}_{\mathrm{H},}, \mathrm{I}_{\text {IL }}$	Leakage current measured at control input（IN）
ton	Turn－on time for the switch．This parameter is measured under the specified range of conditions and by the propagation delay between the digital control（ IN ）signal and analog outputs（COM／NC／NO）signal when the switch is turning ON．
toff	Turn－off time for the switch．This parameter is measured under the specified range of conditions and by the propagation delay between the digital control（ (N) signal and analog outputs（COM／NC／NO）signal when the switch is turning OFF．
$\mathrm{t}_{\text {BBM }}$	Break－before－make time．This parameter is measured under the specified range of conditions and by the propagation delay between the output of two adjacent analog channels（ NC and NO）when the control signal changes state．
Q_{C}	Charge injection is a measurement of unwanted signal coupling from the control（IN）input to the analog（NC，NO，or COM）output．This is measured in coulombs $=$ ）and measured by the total charge induced due to switching of the control input．Charge injection，$Q_{C}=C_{L} \times \Delta V_{O}, C_{L}$ is the load capacitance and ΔV_{O} is the change in analog output voltage．
$\mathrm{C}_{\text {NC（OFF）}}$	Capacitance at the NC port when the corresponding channel（NC to COM）is OFF
$\mathrm{C}_{\text {NO（OFF）}}$	Capacitance at the NO port when the corresponding channel（NC to COM）is OFF
$\mathrm{C}_{\mathrm{NC}(\mathrm{ON})}$	Capacitance at the NC port when the corresponding channel（NC to COM）is ON
$\mathrm{C}_{\mathrm{NO}(\mathrm{ON})}$	Capacitance at the NO port when the corresponding channel（NC to COM）is ON
$\mathrm{C}_{\text {COM（ON）}}$	Capacitance at the COM port when the corresponding channel（COM to NC or COM to NO）is ON
C_{1}	Capacitance of control input（IN）
Oiso	OFF isolation of the switch is a measurement of OFF－state switch impedance．This is measured in dB in a specific frequency，with the corresponding channel（ NC to COM or NO to COM）in the OFF state．

PARAMETER DESCRIPTION (continued)

SYMBOL	DESCRIPTION
X $_{\text {TALK }}$	Crosstalk is a measurement of unwanted signal coupling from an ON channel to an OFF channel (NC to NO or NO to NC). This is measured at a specific frequency and in dB.
BW	Bandwidth of the switch. This is the frequency where the gain of an ON channel is -3 dB below the dc gain.
THD	Total harmonic distortion is defined as the ratio of the root mean square (RMS) value of the second, third, and higher harmonics to the magnitude of fundamental harmonic.
I+	Static power-supply current with the control (IN) pin at $\mathrm{V}+$ or GND
$V_{\text {OUTU }}$	Output voltage during an undershoot event. This is measured by turning off a specific channel and applying an undershoot voltage at the input of the switch.
V $_{\text {OUTO }}$	Output voltage during an overshoot event. This is measured by turning off a specific channel and applying an overshoot voltage at the input of the switch.

TYPICAL CHARACTERISTICS

Figure 1. r_{ON} vs $\mathrm{V}_{\text {COM }}$

Figure 3. r_{ON} vs $\mathrm{V}_{\text {COM }}\left(\mathrm{V}_{+}=5 \mathrm{~V}\right)$

Figure 5. Charge Injection vs $\mathrm{V}_{\text {com }}$

Figure 2. r_{ON} vs $\mathrm{V}_{\text {COM }}\left(\mathrm{V}_{+}=3.3 \mathrm{~V}\right)$

Figure 4. Leakage Current vs Temperature

Figure 6. t_{ow} and $\mathrm{t}_{\text {off }}$ vs Supply Voltage

TYPICAL CHARACTERISTICS (continued)

Figure 7. t_{ON} and $\mathrm{t}_{\mathrm{OFF}}$ vs Temperature

Frequency (Hz)
Figure 9. Bandwidth (BW)

Figure 11. Off Isolation

Figure 8. Logic-Level Threshold

Figure 10. Total Harmonic Distortion (THD) vs Frequency

Figure 12. Crosstalk

TYPICAL CHARACTERISTICS (continued)

Figure 13. Supply Current vs Supply Voltage

PARAMETER MEASUREMENT INFORMATION

Channel ON
$\mathrm{r}_{\text {on }}=\frac{\mathrm{V}_{\mathrm{COM}}-\mathrm{V}_{\mathrm{NO} / \mathrm{NC}}}{\mathrm{I}_{\mathrm{COM}}} \Omega$
$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}

OFF-State Leakage Current
Channel OFF
$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}
V_{Nc} or $\mathrm{V}_{\mathrm{NO}}=0$ to V_{+}
or
$\mathrm{V}_{\text {COM }}=0$ to V_{+}

ON-State Leakage Current
Channel ON
$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}
V_{NC} or $\mathrm{V}_{\mathrm{NO}}=0$ to $\mathrm{V}_{+}, \mathrm{V}_{\mathrm{COM}}=$ Open
or
V_{NC} or $\mathrm{V}_{\mathrm{NO}}=$ Open, $\mathrm{V}_{\mathrm{COM}}=0$ to V_{+}

Figure 15. ON- and OFF-State Leakage Current ($\left.I_{\text {COM(ON) }}, I_{\mathrm{NC}(\mathrm{OFF})}, \mathrm{I}_{\mathrm{NO}(\mathrm{OFF})}, \mathrm{I}_{\mathrm{NC}(\mathrm{ON})}, \mathrm{I}_{\mathrm{NO}(\mathrm{ON})}\right)$

Figure 16. Capacitance ($\left.\mathrm{C}_{\mathrm{IN}}, \mathrm{C}_{\mathrm{COM(ON})}, \mathrm{C}_{\mathrm{NC}(\mathrm{OFF})}, \mathrm{C}_{\mathrm{NO}(\mathrm{OFF})}, \mathrm{C}_{\mathrm{NC}(\mathrm{ON})}, \mathrm{C}_{\mathrm{NO}(\mathrm{ON})}\right)$

PARAMETER MEASUREMENT INFORMATION (continued)

(1) All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}}<5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}<5 \mathrm{~ns}$.
(2) C_{L} includes probe and jig capacitance.
(3) See Electrical Characteristic for $\mathrm{V}_{\mathrm{COM}}$.

Figure 17. Turn-On (t_{ON}) and Turn-Off ($\mathrm{t}_{\mathrm{OFF}}$) Time

Figure 18. Break-Before-Make ($\mathrm{t}_{\text {BBM }}$) Time

Figure 19. Frequency Response (BW)

PARAMETER MEASUREMENT INFORMATION (continued)

Channel OFF: NC to COM
OFF Isolation $=20 \log \frac{v_{\text {COM }}}{V_{N C}} d B$

Network Analyzer Setup

Source Power =0 dBM
DC Bias $=\mathbf{3 5 0} \mathrm{mV}$

Figure 20. OFF Isolation ($\mathrm{O}_{\text {Iso }}$)

Figure 21. Crosstalk ($\mathrm{X}_{\text {TALK }}$)

Figure 22. Charge Injection $\left(Q_{C}\right)$

PARAMETER MEASUREMENT INFORMATION (continued)

Figure 23. Total Harmonic Distortion (THD)

Figure 24. Undershoot and Overshoot Test

PACKAGING INFORMATION

| Orderable Device | Status $^{(1)}$ | Package
 Type | Package
 Drawing | Pins Package
 Qty | Eco Plan ${ }^{(2)}$ | Lead／Ball Finish | MSL Peak Temp ${ }^{(3)}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TS5A623157DGSR | ACTIVE | MSOP | DGS | 10 | 2500 | Green（RoHS \＆
 no Sb／Br） | CU NIPDAU | Level－1－260C－UNLIM |
| TS5A623157DGSRG4 | ACTIVE | MSOP | DGS | 10 | 2500 | Green（RoHS \＆
 no Sb／Br） | CU NIPDAU | Level－1－260C－UNLIM |
| TS5A623157RSER | PREVIEW | QFN | RSE | 10 | 3000 | TBD | Call TI | Call TI |

${ }^{(1)}$ The marketing status values are defined as follows：
ACTIVE：Product device recommended for new designs．
LIFEBUY：TI has announced that the device will be discontinued，and a lifetime－buy period is in effect．
NRND：Not recommended for new designs．Device is in production to support existing customers，but Tl does not recommend using this part in a new design．
PREVIEW：Device has been announced but is not in production．Samples may or may not be available．
OBSOLETE：TI has discontinued the production of the device．
${ }^{(2)}$ Eco Plan－The planned eco－friendly classification：Pb－Free（RoHS），Pb－Free（RoHS Exempt），or Green（RoHS \＆no Sb／Br）－please check http：／／www．ti．com／productcontent for the latest availability information and additional product content details．
TBD：The Pb－Free／Green conversion plan has not been defined．
Pb －Free（RoHS）：TI＇s terms＂Lead－Free＂or＂Pb－Free＂mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances，including the requirement that lead not exceed 0.1% by weight in homogeneous materials．Where designed to be soldered at high temperatures，TI Pb－Free products are suitable for use in specified lead－free processes．
Pb －Free（RoHS Exempt）：This component has a RoHS exemption for either 1）lead－based flip－chip solder bumps used between the die and package，or 2）lead－based die adhesive used between the die and leadframe．The component is otherwise considered Pb－Free（RoHS compatible）as defined above．
Green（RoHS \＆no Sb／Br）：TI defines＂Green＂to mean Pb－Free（RoHS compatible），and free of Bromine（Br）and Antimony（Sb）based flame retardants（ Br or Sb do not exceed 0.1% by weight in homogeneous material）
${ }^{(3)}$ MSL，Peak Temp．－－The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications，and peak solder temperature．

Important Information and Disclaimer：The information provided on this page represents TI＇s knowledge and belief as of the date that it is provided．TI bases its knowledge and belief on information provided by third parties，and makes no representation or warranty as to the accuracy of such information．Efforts are underway to better integrate information from third parties． Tl has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals．TI and TI suppliers consider certain information to be proprietary，and thus CAS numbers and other limited information may not be available for release．

In no event shall Tl＇s liability arising out of such information exceed the total purchase price of the TI part（s）at issue in this document sold by TI to Customer on an annual basis．

TAPE AND REEL INFORMATION

＊All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width W1 $(\mathbf{m m})$	$\mathbf{A 0}(\mathbf{m m})$	$\mathbf{B 0}(\mathbf{m m})$	K0（mm）	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$	Pin1 Quadrant
TS5A623157DGSR	MSOP	DGS	10	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1

＊All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length（mm）	Width（mm）	Height（mm）
TS5A623157DGSR	MSOP	DGS	10	2500	358.0	335.0	35.0

Bottom View
4207268－3／C 01／2008
NOTES：A．All linear dimensions are in millimeters．Dimensioning and tolerancing per ASME Y14．5M－1994．
B．This drawing is subject to change without notice．
C．QFN（Quad Flatpack No－Lead）package configuration．
D．This package complies to JEDEC MO－288 variation UEFD．

NOTES：A．All linear dimensions are in millimeters．
B．This drawing is subject to change without notice．
C．Body dimensions do not include mold flash or protrusion．
D．Falls within JEDEC MO－187 variation BA．

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries（TI）reserve the right to make corrections，modifications，enhancements，improvements， and other changes to its products and services at any time and to discontinue any product or service without notice．Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete．All products are sold subject to Tl＇s terms and conditions of sale supplied at the time of order acknowledgment．
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl＇s standard warranty．Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty．Except where mandated by government requirements，testing of all parameters of each product is not necessarily performed．
TI assumes no liability for applications assistance or customer product design．Customers are responsible for their products and applications using TI components．To minimize the risks associated with customer products and applications，customers should provide adequate design and operating safeguards．
TI does not warrant or represent that any license，either express or implied，is granted under any TI patent right，copyright，mask work right， or other TI intellectual property right relating to any combination，machine，or process in which TI products or services are used．Information published by TI regarding third－party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof．Use of such information may require a license from a third party under the patents or other intellectual property of the third party，or a license from Tl under the patents or other intellectual property of TI ．
Reproduction of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties，conditions，limitations，and notices．Reproduction of this information with alteration is an unfair and deceptive business practice．TI is not responsible or liable for such altered documentation．Information of third parties may be subject to additional restrictions．
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated Tl product or service and is an unfair and deceptive business practice．TI is not responsible or liable for any such statements．

TI products are not authorized for use in safety－critical applications（such as life support）where a failure of the TI product would reasonably be expected to cause severe personal injury or death，unless officers of the parties have executed an agreement specifically governing such use．Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications，and acknowledge and agree that they are solely responsible for all legal，regulatory and safety－related requirements concerning their products and any use of TI products in such safety－critical applications，notwithstanding any applications－related information or support that may be provided by TI．Further，Buyers must fully indemnify Tl and its representatives against any damages arising out of the use of Tl products in such safety－critical applications．
TI products are neither designed nor intended for use in military／aerospace applications or environments unless the TI products are specifically designated by TI as military－grade or＂enhanced plastic．＂Only products designated by TI as military－grade meet military specifications．Buyers acknowledge and agree that any such use of TI products which TI has not designated as military－grade is solely at the Buyer＇s risk，and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use．
TI products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are designated by TI as compliant with ISO／TS 16949 requirements．Buyers acknowledge and agree that，if they use any non－designated products in automotive applications，TI will not be responsible for any failure to meet such requirements．
Following are URLs where you can obtain information on other Texas Instruments products and application solutions：
$\left.\begin{array}{llll}\text { Products } & & & \\ \text { Amplifiers } \\ \text { Data Converters } & \text { amplifier．ti．com }\end{array} \quad \begin{array}{l}\text { Audio } \\ \text { Audions }\end{array}\right]$

Mailing Address：Texas Instruments，Post Office Box 655303，Dallas，Texas 75265
Copyright © 2009，Texas Instruments Incorporated

[^0]: （1）The package thermal impedance is calculated in accordance with JESD 51－7．

