賣的 725644 (BISCRETE / OPTO)

99D 16731

DT-39-13

SEMICONDUCTOR TECHNICAL DATA

TOSHIBA FIELD EFFECT TRANSISTOR 2 S K 6 4 4

SILICON N CHANNEL MOS TYPE $(\pi-Mosi)$

INDUSTRIAL APPLICATIONS

HIGH SPEED, HIGH CURRENT SWITCHING APPLICATIONS. CHOPPER REGULATOR, DC-DC CONVERTER AND MOTOR DRIVE APPLICATIONS.

FEATURES:

- Low Drain-Source ON Resistance : $R_{\mbox{DS}(\mbox{ON})}{=}0.7\Omega$ (Typ.)
- . High Forward Transfer Admittance : $|Y_{fs}|=6.0S$ (Typ.)
- . Low Leakage Current : $I_{GSS}=\pm100$ nA(Max.) @ $V_{GS}=\pm20$ V

 $I_{DSS}=250\mu\text{A}$ (Max.) @ $V_{DS}=500\text{V}$

. Enhancement-Mode : V_{th} =2.0 4 .0 7 0 8 0 7 1 $_{D}$ =1 1 mA

1 9ATE	48 WX. 200±03 200±05 200±05 200±05 200±05 200±05 200±05 200±05 200±05 200±05 200±05 200±05 200±05 200±05 200±05 200±05 200±05 200±05 200±05 20
JEDEC	-
EIAJ	
TOSHIBA	2-16C1B

MAXIMUM RATINGS (Ta=25°C)

•				
CHARACTERISTIC		RATING	UNIT	
oltage	V _{DSX}	500	V	
age $(R_{GS}=20k\Omega)$	v_{DGR}	500	V	
tage	v _{GSS}	±20	V	
DC	ID	10	А	
Pulse	I _{DP}	30		
Drain Power Dissipation (Tc=25°C) Channel Temperature		125	W	
		150	°C	
Storage Temperature Range		-55∿150	°C	
	Ditage Lage (R _{GS} =20kΩ) Lage DC Pulse ssipation	$\begin{array}{c c} \text{Dltage} & V_{DSX} \\ \text{Lage} & (R_{GS} = 20 \text{k}\Omega) & V_{DGR} \\ \text{Lage} & V_{GSS} \\ \text{DC} & I_D \\ \text{Pulse} & I_{DP} \\ \text{ssipation} & P_D \\ \text{Sture} & Tch \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Weight: 4.6g

THERMAL CHARACTERISTICS

CHARACTERISTIC	SYMBOL	MAX.	UNIT	
Thermal Resistance, Junction to Case	R _{th(j-c)}	1.0	°C/W	
Thermal Resistance, Junction to Ambient	R _{th(j-a)}	50	°C/W	
Muximum Lead Temperature for Soldering Purposes (1.6mm from case for 10 seconds)	TL	300	°C	

		TOSHIBA CORPORATION	
GTIASA -	•	- 100 -	

-100 -

909查询28下码料换应商DISCRETE/OPTO)

99D 16732

DT-39-13

2 S K 6 4 4

ELECTRICAL CHARACTERISTICS (Ta=25°C)

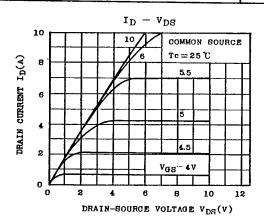
BBBOIRIONE CHA	IKAOTEKI511C	3 (18=2.	, ()				
CHARACTER	ISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Gate Leakage Curi	ent	I _{GSS}	V _{GS} =±20V, V _{DS} =0V	-	-	±100	nΑ
Drain Cut-off Cur	rent	IDSS	V _{DS} =500V, V _{GS} =0V	-	-	300	μА
Drain-Source Brea	kdown Voltage	V(BR)DSS	ID=10mA , VGS=0V	500	_	_	V
Gate Threshold Vo		V _{th}	V _{DS} =10V, I _D =1mA	2.0	-	4.0	v
Forward Transfer	Admittance	Yfs	V _{DS} =10V, I _D =5A	3.0	6.0		s
Drain-Source ON R	esistance	R _{DS} (ON)	I _D =5A , V _{GS} =10V	-	0.7	1.0	Ω
Drain-Source ON V	oltage		ID=10A , VGS=10V	-	8.5	12.5	V
Input Capacitance		Ciss	V _{DS} =10V, V _{GS} =0V, f=1MHz	-	1350	1800	pF
Reverse Transfer Capacitance		Crss		-	260	450	
Output Capacitano	е	Coss		-	560	750	
	Rise Time	tr	10V V _{IN} I _D =5A V _{OUT} 10µs & 1 S V _{OD} = 200V Duty≤17	-	35	70	ns
Switching Time	Turn-on Time	ton		-	50	100	
DWITCHING TIME	Fall Time	tf		-	35	70	
	Turn-off Time	toff			200	400	
Total Gate Charge (Gate-Source Pius Gate-Drain)		Qg	I _D =10A , V _{GS} =10V	-	47	60	пС
Gate-Source Charge		Qgs		- 1	22	_	
Gate-Drain ("Miller") Charge		Qgd	V _{DD} ≒400V	-	25		

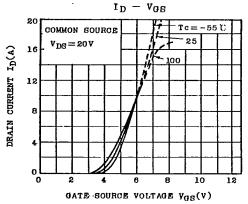
SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS (Ta=25°C)

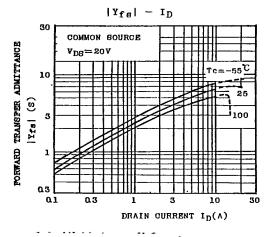
CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Continuous Drain Reverse Current	I _{DR}		-	-	10	A
Pulse Drain Reverse Current	IDRP			-	30	A
Diode Forward Voltage	VDSF	I _{DR} =10A , V _{GS} =0V	-	_	2.0	ν
Reverse Recovery Time	trr	I _{DR} =10A	-	350	-	ns
Reverse Recovered Charge	Qrr	dI _{DR} /dt=100A/µs	-	2.4		μC

	TOSHIBA CORPORATION	·
GTIASA	- 101 -	·····

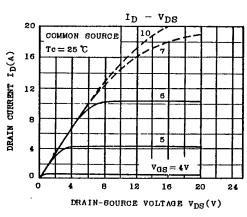
查的295044Teshtaba (DISCRETE/OPTO)

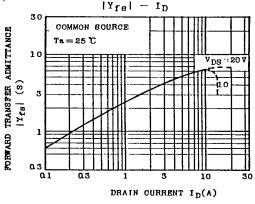

99D 16733 DT-39-13

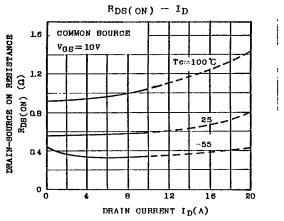

TOSHIBA


SEMICONDUCTOR

TECHNICAL DATA


2 S K 6 4 4



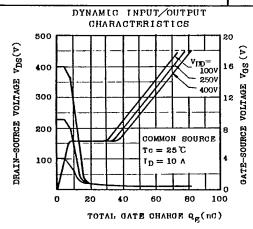


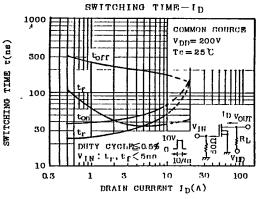
- 102 - GT1A2(2)

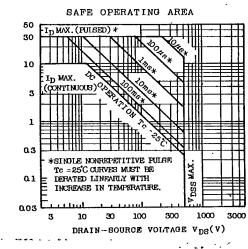
EGA-2SK644-3
TOSHIBA CORPORATION

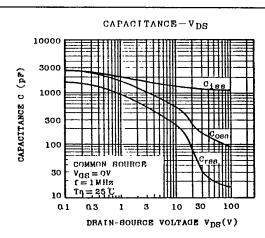
9092的PSKIOSH共動商(DISCRETE/OPTO)

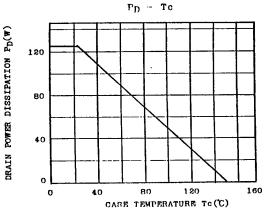
99D 16734


DT-39-13


TOSHIBA


SEMICONDUCTOR


TECHNICAL DATA


2 S K 6 4 4

- 103 -

EGA-2SK644-4

TOSHIBA CORPORATION

GT1A2(2)