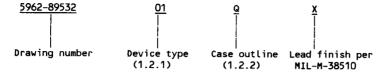
	REVISIONS		
LTR	9"5962 8953201XA"供应商ESCRIPTION	DATE (YR-MO-DA)	APPROVED
A	Add case outline Y, add vendor CAGE code 18324.	90-03-08	W. Heckman
В	Corrected supply voltage in 1.3 absolute max ratings. Technical changes to table I. Add new footnote 3/ to table I. Editorial changes throughout.	92-03-16	An Tolk

THE ORIGINAL FIRST PAGE OF THIS DRAWING HAS BEEN REPLACED.

REV	В	В	В	В		-														
SHEET	35	36	37	38																
REV	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
SHEET	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
REV STATU	_			RE	V		В	В	В	В	В	В	В	В	В	В	В	В	В	В
OF SHEETS	3 	•••		SH	EET		1	2	3	4	5	6	7	8	9	10	11	12	13	14
PMIC N/A		<u></u>			PREPARED BY Todd D. Creek			DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444												
STANDA MIL	ITAF	RY			KED BY Monni				-											
THIS DRAWING		VAILAE			OVED B hael A	Y . Frye				MICROCIRCUITS, DIGITAL, CMOS, DUAL ASYNCHRONOUS RECEIVER/TRANSMITTER, MONOLITHIC SILICON										
AND AGENO DEPARTMENT	CIES O	F THE		DRAW.	ING AP	PROVAL	DATE													
				89	9-04-0	4				SIZ	E	CAG	E CO	DE		59	962-	8953	32	
AMSC N/A	REVISION LEVEL		A		6	726	8													
					В			SHE	ET	1			OF	38				1		


DESC FORM 193

Use previous edition until exhausted.

1. SCOPE

<mark>室询"5962-8953201XA"供应商</mark> MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices".

1.2 Part or Identifying Number (PIN). The complete PIN shall be as shown in the following example:

1.2.1 <u>Device type(s)</u>. The device type(s) shall identify the circuit function as follows:

Device type	<u>Generic number</u>	<u>Circuit function</u>
01	88c681, 2692	Dual asynchronous receiver/transmitter (DUART)
02	88c681, 2692	Dual asynchronous receiver/transmitter (DUART) with 7-bit input and 8-bit output ports
03	68c681	Dual asynchronous receiver/transmitter (DUART)

1.2.2 <u>Case outline(s)</u>. The case outline(s) shall be as designated in appendix C of MIL-M-38510, and as follows:

Outline letter

Case outline

```
Q D-5 (40-lead, 2.096" x .620" x .225"), dual-in-line package
X D-10 (28-lead, 1.490" x .610" x .232"), dual-in-line package
U C-5 (44-terminal, .662" x .662" x .120"), square chip carrier package
Y See figure 1 (52-lead, 1.330" x .660" x .100"), flat package
```

1.3 Absolute maximum ratings.

1.4 Recommended operating conditions.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-89532
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL B	SHEET 2

2. APPLICABLE DOCUMENTS

The Governments specification is sendard, and bulletin. Unless otherwise specified, the following specification, standard, and bulletin of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation form a part of this drawing to the extent specified herein.

SPECIFICATION

MILITARY

MIL-M-38510

- Microcircuits, General Specification for.

STANDARD

MILITARY

MIL-STD-883

- Test Methods and Procedures for Microelectronics.

BULLETIN

MILITARY

MIL-BUL-103

- List of Standardized Military Drawings (SMD's).

(Copies of the specification, standard, and bulletin required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.)

- 2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.
 - 3. REQUIREMENTS
- 3.1 <u>Item requirements</u>. The individual item requirements shall be in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein.
- 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-M-38510 and herein.
 - 3.2.1 Case outline(s). The case outline(s) shall be in accordance with 1.2.2 herein and figure 1.
 - 3.2.2 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 2.
 - 3.2.3 Functional block diagram. The functional block diagram shall be as specified on figure 3.
- 3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full case operating temperature range.
- 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table I.
- 3.5 <u>Marking</u>. Marking shall be in accordance with MIL-STD-883 (see 3.1 herein). The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked as listed in MIL-BUL-103 (see 6.7 herein).
- 3.6 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-BUL-103 (see 6.7 herein). The certificate of compliance submitted to DESC-ECC prior to listing as an approved source of supply shall affirm that the manufacturer's product meets the requirements of MIL-STD-883 (see 3.1 herein) and the requirements herein.
- 3.7 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-STD-883 (see 3.1 herein) shall be provided with each lot of microcircuits delivered to this drawing.
- 3.8 <u>Notification of change</u>. Notification of change to DESC-ECC shall be required in accordance with MIL-STD-883 (see 3.1 herein).

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444	SIZE A		5962-89532
		REVISION LEVEL B	SHEET 3

查询"5962-8953201XA"供应商 TABLE I. <u>Electrical performance characteristics</u>.

Test	Symbol	Conditions -55°C < T _C < +125°C	Device	Group A	Lin	nits	Uni
		-55°C \leq T _C \leq +125°C V _{CC} = 5 V ±10% unless otherwise specified $\frac{1}{2}$ /	types	sub- groups	Min	Max	
Input low voltage	VIL		ALL	1,2,3		0.8	V
Input high voltage (except X1/CLK)	v _{IH}		ALL	1,2,3	2.0		v
Input high voltage (X1/CLK)	v _{IH}		Att	1,2,3	4.0		v
Output low voltage	v _{OL}	I _{OL} = 2.4 mA, V _{CC} = 4.5 V	ALL	1,2,3		0.4	v
Output high voltage (except open collector outputs)	v _{OH}	$I_{OH} = -400 \ \mu A$, $V_{CC} = 4.5 \ V$	ALL	1,2,3	2.4		V
Input leakage current	IIL	v _I = 0 v to v _{CC}	ALL	1,2,3	-25	10	μA
Data bus three-state leakage current	I _{OZL}	v _o = 0.4 V to V _{CC}	ALL	1,2,3	-10	10	μA
X1/CLK low input current	(XI)	V _I = 0 V, X2 grounded	All	1,2,3	-6.0	0.0	mA
X1/CLK high input current	(XX)	v _I = v _{CC} , X2 grounded	ALL	1,2,3	-1.0	1.0	mA
X2 low input current 3/	I (X2)	V _I = 0 V, X1/CLK floated	ALL	1,2,3	-100	0.0	μA
X2 high input current <u>3</u> /	I (契)	V _I = V _{CC} , X1/CLK floated	All	1,2,3	-0.0	100	μА
Open collector output leakage current	^I он	v _O = 0.4 v to v _{CC}	All	1,2,3	-10	10	μA
Power supply current	¹ cc	v _{cc} = 5.5 v,	All	1,2,3		15	mA
Pin capacitance	CIN	V _{IN} = 0 V F _C = 1 MHz See 4.3.1c	ALL	4		20	pF

STANDARDIZED MILITARY DRAWING	SIZE A		5962-89532
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL B	SHEET 4

TABLE I.	<u>Electrical performance characteristics</u> - Contin	ued.
查询"5962-8953201XA"供应商		

<u> </u>		Y					
Test	Symbol	Conditions -55°C \le T_C \le +125°C V_C = 5 V \text{ \text{ to }	Device types	Group A sub- groups	Lin	nits Max	Unit
		1/ 2/		groups		liax	
Functional testing		See 4.3.1d	ALL	7,8			
Reset pulse width	tRES		01,02	9,10,11	1.0		μs
AO-A3 setup time to RDN, WRN	t _{AS}	See figure 4 4/	01,02	9,10,11	10		ns
AO-A3 hold time from RDN, WRN	t _{AH}		01,02	9,10,11	100		ns
CEN setup time to RDN, WND Low	tcs		01,02	9,10,11	0		ns
CEN hold time from RDN, WRN high	^t CH		01,02	9,10,11	0		ns
WRN, RDN pulse width	t _{RW}		01,02	9,10,11	225		ns
Data valid after RDN low	t _{DD}		01,02	9,10,11		175	ns
Data bus floating after RDN high	t _{DF}		01,02	9,10,11		110	ns
Data setup time before WRN high	t _{DS}		01,02	9,10,11	100		ns
Data hold time after WRN high	t _{DH}		01,02	9,10,11	20		ns
High time between READS and/ or WRITES <u>5</u> / <u>6</u> /	t _{RWD}		01,02	9,10,11	200		ns
Port input setup time before RDN Low	t _{PS}		01,02	9,10,11	0		ns
Port input hold time after RDN high	t _{PH}		01,02	9,10,11	0		ns
Port output valid after WRN high	t _{PD}		01,02	9,10,11		400	ns

STANDARDIZED MILITARY DRAWING	SIZE A		5962-89532
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL B	SHEET 5

TABLE I. <u>Electrical performance characteristics</u> - Continued. 暨询"5962-8953201XA"供应商 Conditions -55°C ≤ T_C ≤ +125°C V_{CC} = 5 V ±10% unless otherwise specified Test Symbol Device Group A Limits Unit types subgroups Min Max 1/2/ INTRN (or OP3-OP7 when used See figure 4 4/ as interrupts) negated from: Read RHR (RxRDY/FFULL 01,02 9,10,11 t_{IR1} 325 ns interrupt) Write THR (TxRDY interrupt) t_{IR2} 01,02 9,10,11 325 ns Reset command (delta break 01,02 t_{IR3} 9,10,11 325 ns interrupt) Stop C/T command (counter 01,02 t IR4 9,10,11 325 ns interrupt) Read IPCR (input port t IR5 01,02 9,10,11 325 กร change interrupt) Write IMR (clear of 01,02 t_{IR6} 9,10,11 325 ns interrupt mask bit) X1/CLK high or low time t_{CLK} 01,02 9,10,11 100 ns X1/CLK frequency fcLK 01.02 9,10,11 2.0 4.0 MHz CTCLK (IP2) high or low time 01,02 9,10,11 t_{CTC} 100 ns CTCLK (IP2) frequency 7/ f_{CTC} 01,02 9,10,11 n 4.0 MHz RxC high or low time 01,02 9,10,11 220 t_{RX} ns RxC frequency (16X) 7/ 01,02 9,10,11 f_{RX} 0 2.0 MHz RxC frequency (1X) 7/ f_{RX} 01,02 9,10,11 0 1.0 MHz TxC high or low time 01,02 t_{TX} 9,10,11 220

See footnotes at end of table.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-89532
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL B	SHEET 6

ns

DESC FORM 193A

TABLE I.	Electrical	performance	characteristics	-	Continued.

<u>应商</u> Symbol	Conditions		Group A	Limits		Unit
	unless otherwise specified 1/2/		groups	Min	Max	
f _{TX}	See figure 4 4/	01,02	9,10,11	0	2.0	MHz
f _{TX}		01,02	9,10,11	0	1.0	MHz
t _{TXD}		01,02	9,10,11		350	ns
t _{TCS}		01,02	9,10,11	0	150	ns
^t RXS		01,02	9,10,11	240		ns
t _{RXH}		01,02	9,10,11	200		ns
t _{RES}		03	9,10,11	1.0	 	μs
t _{AS}		03	9,10,11	10		ns
^t AH		03	9,10,11	0		ns
t _{RWS}		03	9,10,11	0		ns
t _{RWH}		03	9,10,11	0		ns
tcsw		03	9,10,11	90		ns
t _{CSD}		03	9,10,11	20		ns
t _{DD}		03	9,10,11		175	ns
t _{DF}		03	9,10,11		100	ns
t _{DS}		03	9,10,11	100		ns
	fTX fTX fTX tTXD tTCS tRXH tRES tAS tAH tRWS tRWH tcsW tcsD tDF	Symbol	Symbol Conditions very empty of the period	Symbol -55°C ≤ T _C ≤ +125°C V _{CF} = 5 ∨ ±10% unless offerwise specified 1/2/ Device types Group A subgroups f _{TX} See figure 4 4/ 01,02 9,10,11 f _{TX} 01,02 9,10,11 t _{TXD} 01,02 9,10,11 t _{TXS} 01,02 9,10,11 t _{RXS} 01,02 9,10,11 t _{RXS} 01,02 9,10,11 t _{RXH} 01,02 9,10,11 t _{RXS} 03 9,10,11 t _{AS} 03 9,10,11 t _{RWS} 03 9,10,11 t _{RWS} 03 9,10,11 t _{CSW} 03 9,10,11 t _{CSW} 03 9,10,11 t _{CSD} 03 9,10,11 t _{DD} 03 9,10,11	Symbol -55°C ≤ T ≤ T ≤ +125°C V € = 5 ∨ ±10% unless offerwise specified 1/ 2/ Device types Group A subgroups Lim Min f _{TX} See figure 4 4/ 01,02 9,10,11 0 f _{TX} 01,02 9,10,11 0 0 t _{TXD} 01,02 9,10,11 0 t _{TXD} 01,02 9,10,11 0 t _{RXS} 01,02 9,10,11 20 t _{RXH} 01,02 9,10,11 20 t _{RXH} 03 9,10,11 10 t _{AS} 03 9,10,11 10 t _{RWS} 03 9,10,11 0 t _{RWS} 03 9,10,11 0 t _{CSW} 03 9,10,11 0 t _{CSW} 03 9,10,11 20 t _{DD} 03 9,10,11 20 t _{DD} 03 9,10,11 20	Symbol Condition Limits -55°C T _C < +125°C

STANDARDIZED MILITARY DRAWING	SIZE A		5962-89532
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL B	SHEET 7

室询"5962-8953201XA"供应辖 I. <u>Electrical performance characteristics</u> - Continued.

Test	Symbol	Conditions -55°C < T _C < +125°C	Device	Group A	Lin	nits	Unit
		-55°C ≤ T _C ≤ +125°C V _{CC} = 5 V ±10% unless otherwise specified <u>1</u> / <u>2</u> /	types	sub- groups	Min	Max	
Data hold time from CSN high	^t DH	See figure 4 4/	03	9,10,11	0		ns
DTACKN low from read data	tDAL		03	9,10,11	0		ns
DTACKN low (read cycle) from CLK high	t _{DCR}		03	9,10,11		125	ns
DTACKN low (write cycle) from CLK high	t _{DCW}		03	9,10,11		125	ns
DTACKN high from CSN or IACKN high	^t DAH		03	9,10,11		100	ns
DTACKN high impedance from CSN or IACKN high	† _{DAT}		03	9,10,11		125	ns
CSN or IACKN setup time 10/ to clock high	tcsc		03	9,10,11	90		ns
Port input setup to CSN low	^t PS		03	9,10,11	0		ns
Port input hold time CSN high	t _{PH}		03	9,10,11	0		ns
Port output valid from CSN high	t _{PD}		03	9,10,11		400	ns
INTRN, or OP3-OP7 when used as interrupts, negated from:							
Read RHR (RxRDY/FFULL interrupts)	t IR1		03	9,10,11	[325	ns
Write THR (TxRDY interrupt)	t _{IR2}		03	9,10,11		325	ns
Reset command (delta break interrupt)	t _{IR3}		03	9,10,11		325	ns
Stop C/T command (counter interrupt)	t IR4		03	9,10,11		325	ns

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444	SIZE A		5962-89532
		REVISION LEVEL B	SHEET 8

TA	BLE I.	Electrical performance character	istics - 0	ontinued.			
查询"5962-8953201XA"供 Test	应商 Symbol	Conditions $-55^{\circ}C \leq T_{C} \leq +125^{\circ}C$ $V_{CC} = -5 V \pm 10\%$ unless otherwise specified $\frac{1}{2}$	Device types	Group A sub- groups	Lim Min	its Max	Unit
Read IPCR (input port change interrupt)	t _{IR5}		03	9,10,11		325	ns
Write IMR (clear of inter- _rupt mask bit)	t IR6		03	9,10,11		325	ns
X1/CLK high or low time	tcLK		03	9,10,11	100		ns
X1/CLK frequency	f _{CLK}		03	9,10,11	2.0	4.0	MHz
CTCLK high or low time	tcTC		03	9,10,11	100		ns
CTCLK frequency	f _{CTC}		03	9,10,11	0	4.0	MHz
RxC high or low time	t _{RX}		03	9,10,11	220		ns
RxC frequency (16X)	f _{RX}		03	9,10,11	0	2.0	MHz
RxC frequency (1X)	f _{RX}		03	9,10,11	0	1.0	MHz
TxC high or low time	t _{TX}		03	9,10,11	220		ns
TxC frequency (16X)	f _{TX}		03	9,10,11	0	2.0	MHz
TxC frequency (1X)	f _{TX}		03	9,10,11	0	1.0	MHz
TXD output delay from TxC	t _{TXD}		03	9,10,11		350	ns
Output delay from TxC low to TxD data output	t _{TCS}		03	9,10,11	0	150	ns

STANDARDIZED MILITARY DRAWING	SIZE A		5962-89532
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL B	SHEET

Test	Symbol	$V_{CC} = 5$ V ±10% types sub-		Group A	Limits	Unit		
				types	sub- groups	Min	Max	
RxD data setup time to RxC high	t _{RXS}	See figure 4	<u>4</u> /	03	9,10,11	240		ns
RxD data hold time from RxC high	^t RXH			03	9,10,11	200		ns

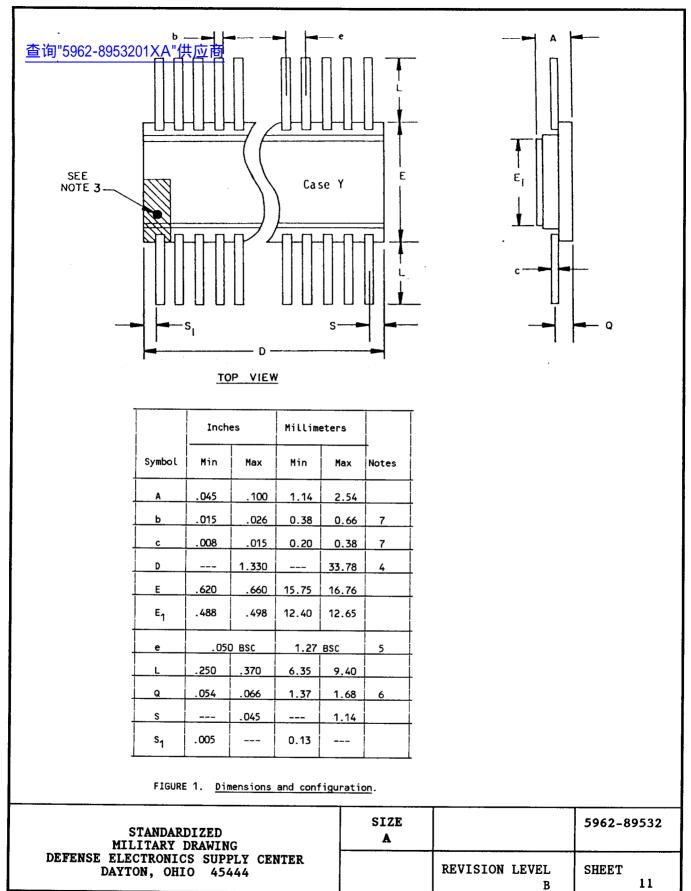
 $\underline{1}$ / All voltage measurements are referenced to ground (GND). For testing, all inputs except X1/CLK swing between 0.4 V and 2.4 V with a transition time of < 20 ns. For X1/CLK this swing is between 0.4 V and 4.4 V. All time measurements are referenced at input voltages of 0.8 V and 2.0 V as appropriate.

 Test condition for outputs: C_L = 150 pF tied to ground, except interrupt outputs. Test condition for interrupt outputs: C_L = 50 pF tied to ground, R_L = 2.7 kΩ to V_{CC}.
 For CMOS technology: I_{IL}(X2) X₁/CLK = V_{CC}, I_{IH}(X2) X₁/CLK = 0.0 v.
 Timing is illustrated and referenced to the WRN and RDN inputs. The device may also be operated with CEN as the "strobing" input. In this case, all timing specifications apply referenced to the falling and rising edges of CEN. CEN and RDN (also CEN and WRN) are AND'ed internally. As a consequence the signal asserted last initiates the cycle and the signal negated first terminates the cycle.

5/ If CEN is used as the "strobing" input, the parameter defines the minimum high times between one CEN and the next. The RDN signal must be negated for t_{RWD} to guarantee that any status register changes are valid. Consecutive write operations to the same command register require at least three edges of the X1 clock between

writes.

Minimum frequencies may not be tested, but are guaranteed by design.


This specification will impose maximum 68000 CPU CLK to 6 MHz. Higher CPU CLK can be used if repeating bus reads are not performed. Consecutive write operations to the same command register require at least three edges of the X1 clock between writes.

This specification imposed a lower bound on CSN and IACKN low, guaranteeing that it will be low for at least 1 CLK period. This requirement is made on CSN only to insure assertion of DTACKN and not to guarantee operation

of the part.

10/ This specification is made only to insure that DTACKN is asserted with respect to the rising edge of the X1/CLK pin as shown in the timing diagram, not to guarantee operation of the part. If the setup time is violated, DTACKN may be asserted as shown, or may be asserted one clock cycle later.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-89532
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL B	SHEET 10

查询"5962-8953201XA"供应商				
NOTES: 1. Dimensions are in inches. 2. Metric equivalents are for general information only 3. A lead tap (enlargement) or index dot is located wishown at pin 1. Other pin numbers proceed sequenticounterclockwise (as viewed from the top of the dev. 4. This dimension allows for off-center lid, meniscus, 5. The reference pin spacing is .050 (1.27 mm) betweer pin centerline is located within ±.005 (0.13 mm) of position relative to the first and last pin numbers 6. This dimension is measured at the point of exit of 7. Lead dimensions include .003 inch allowance for hot	ithin the shaded ially from pin 1 vice). , and glass overrocenterlines. Ef its logitudinal sections.	un. ach		
FIGURE 1. <u>Dimensions and configuration</u>				
STANDARDIZED MILITARY DRAWING	SIZE A			5962-89532
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LE	EVEL B	SHEET 12

查询"5962-8953201XA"供应商

Device type 01

Case outline X

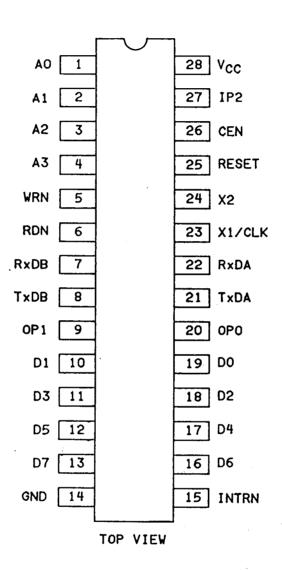
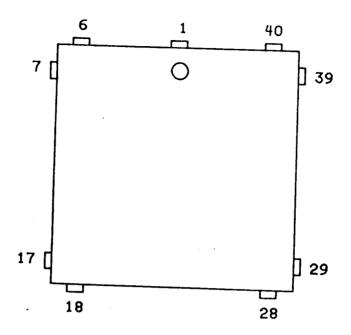


FIGURE 2. <u>Terminal connections</u>.


STANDARDIZED MILITARY DRAWING	SIZE A		5962-89532
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL B	SHEET

≦询"5962-8953201XA"供应商 Device type 02 Case outline Q AO 40 V_{CC} IP3 2 39 IP4 A1 3 38 IP5 IPI 4 37 IP6 A2 5 36 IP2 ДЗ 6 35 CEN IPO 7 34 RESET WRN 8 33 X2 RDN 9 32 X1/CLK R×DB 10 31 RxDA TxDB 11 30 TxDA OP1 12 29 OPO OP3 13 28 OP2 0P5 14 27 OP4 OP7 15 26 OP6 D1 16 25 D0 D3 17 24 D2 D5 18 23 D4 D7 19 22 D6 GND 20 21 INTRN TOP VIEW FIGURE 2. <u>Terminal connections</u> - Continued. SIZE 5962-89532 STANDARDIZED A MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER REVISION LEVEL SHEET DAYTON, OHIO 45444 14

查询"5962-8953201XA"供应商

Device type 02

Case outline U

Pin	Function	Pin	Function	Pin	Function	Pin	Function
1	NC	12	NC NC	23	NC	34	NC
2	AO	13	TxDB	24	INTRN	35	R×DA
3	IP3	14	OP1	25	D6	3 6	X1/CLK
4	A1	15	OP3	26	D4	37	X2
5	IP1	16	OP5	27	D2	38	RESET
6	A2	17	0P7	28	DO	39	CEN
7	А3	18	D1	29	OP6	40	IP2
8	IPO	19	D3	30	OP4	41	IP6
9	WRN	20	D5	31	OP2	42	IP5
10	RDN	21	D7'	32	OPO	43	IP4
11	RxDB	22	GND	33	TxDA	44	v _{cc}

FIGURE 2. <u>Terminal connections</u> - Continued.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444	SIZE A		5962-89532
		REVISION LEVEL B	SHEET 15

DESC FORM 193A

查询"5962-8953201XA"供应商 Device type 02 Case outline Y v_{cc} ΑO 52 IP4 IP3 51 50 IP5 ΑI IPI IP6 49 48 IP2 Α2 47 N/C A3 46 N/C N/C N/C N/C 45 44 CEN N/C 43 RESET IPO 10 52 - PIN FLAT PACK 42 X2 WRN 11 XI/CLK RDN 41 12 13 40 RXDA RXDB 39 TXDA TXDB 14 38 OPO 15 OPI 37 OP2 OP3 16 17 36 OP4 OP5 35 OP6 OP7 18 19 34 N/C N/C N/C N/C 20 33 32 21 N/C N/C 22 31 DO DI 23 30 D2 **D3 D4 D**5 24 29 **D7** 25 28 **D6** GND 27 INTRN 26 FIGURE 2. Terminal connections - Continued. 5962-89532 SIZE **STANDARDIZED** A MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER REVISION LEVEL SHEET DAYTON, OHIO 45444

16

查询"5962-8953201XA"供应商

Device type 03

Case outline Q

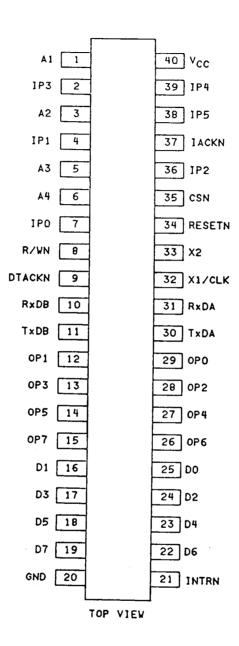
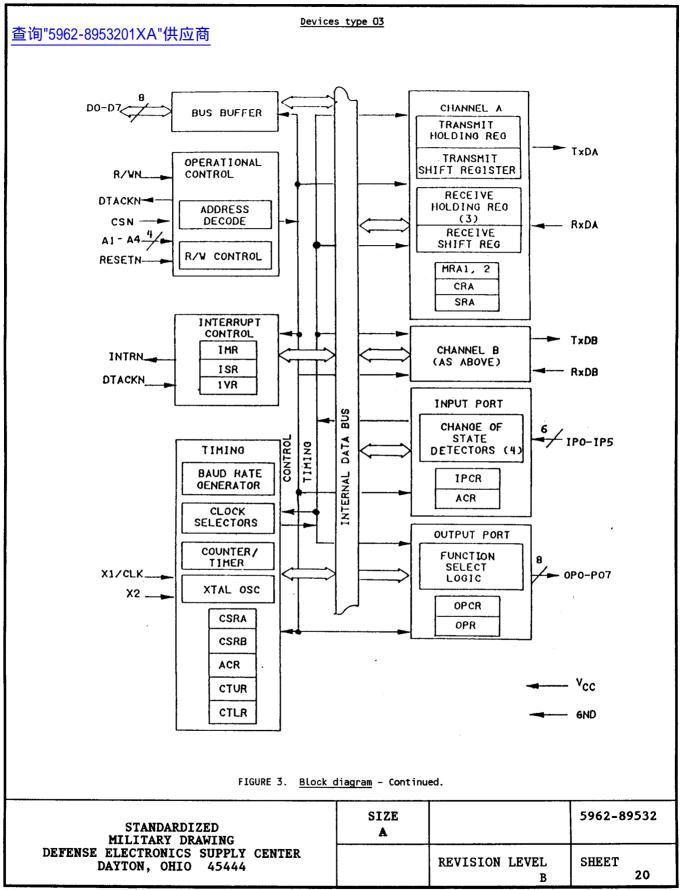


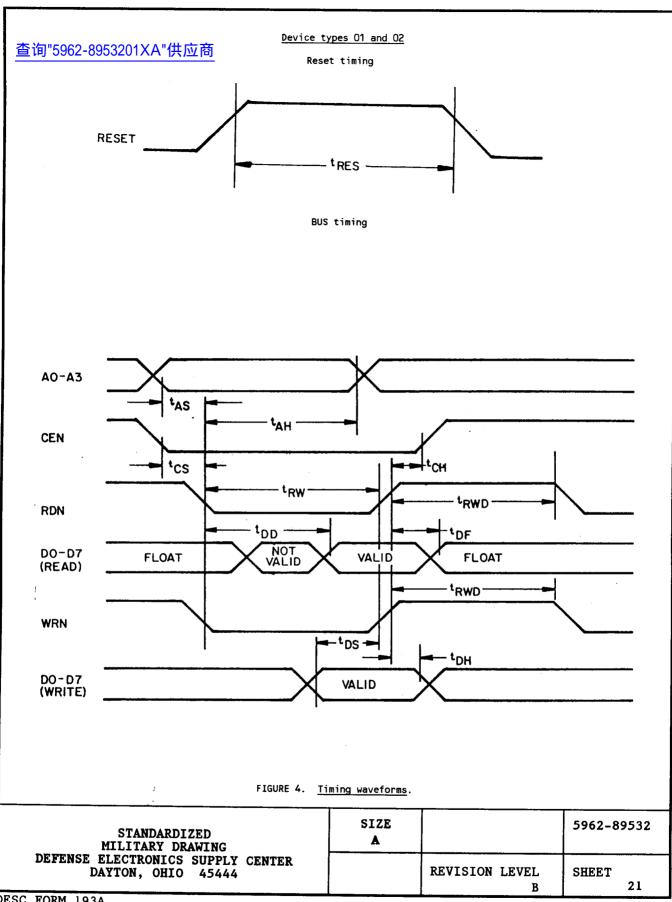
FIGURE 2. <u>Terminal connections</u> - Continued.

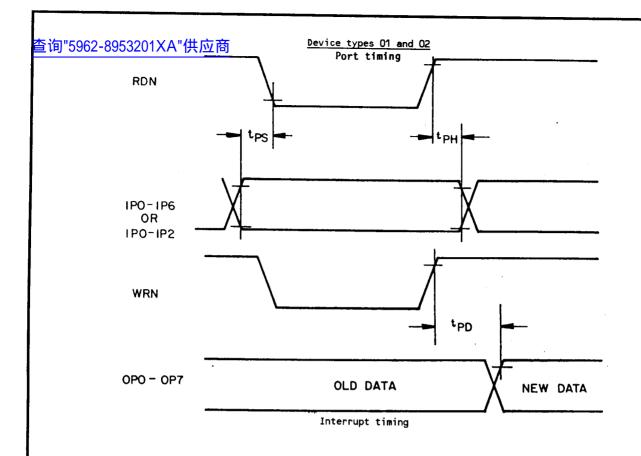
STANDARDIZED MILITARY DRAWING	SIZE A		5962-89532
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL B	SHEET 17

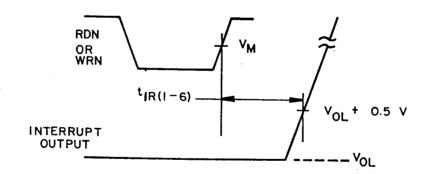
DESC FORM 193A

Pin	 Function	Pin	Function	Pin	Function	 Pin	Function
1	NC	12	NC	23	NC	34	NC
2	A1	13	TxDB	24	INTRN	35	RxDA
3	IP3	14	OP1	25	D6	36	X1/CLK
4	A2	15	OP3	26	D4	37	х2
5	IP1	16	OP5	27 D2		38	RESETN
6	A3	17	OP7	28	DO	39	CSN
7	A4	18 D1		29	OP6	40	IP2
8	IPO	19	03	30	OP4	41	IACKN
9	R/WN	20	D5	31	OP2	42	IP5
10	DTACKN	21	D7	32	оро	43	IP4
11	RxDB	22	GND	33	TxDA	44	v _{cc}

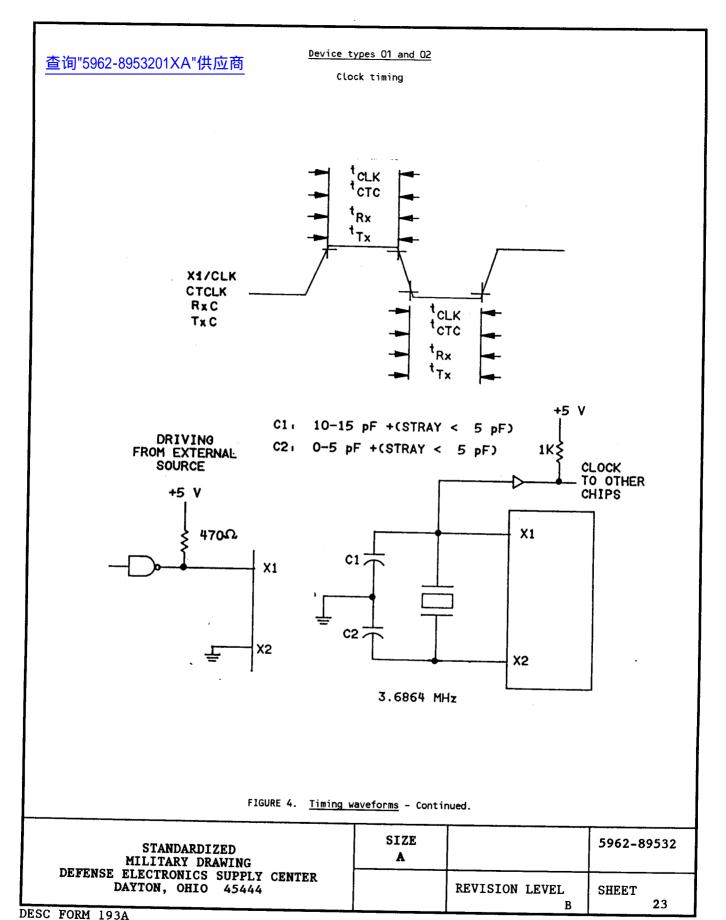

18

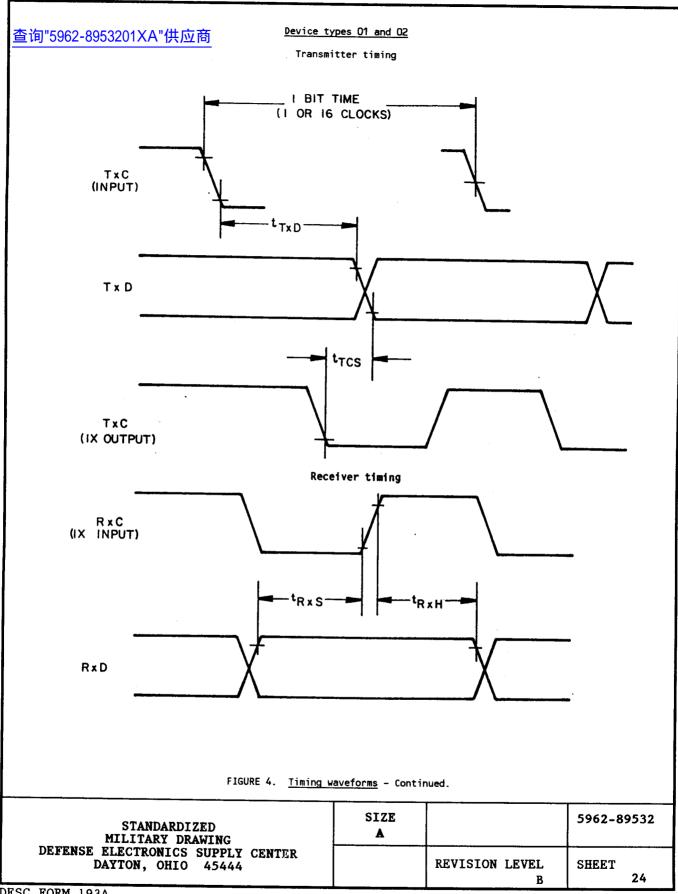

28


FIGURE 2. <u>Terminal connections</u> - Continued.


STANDARDIZED MILITARY DRAWING	SIZE A		5962-89532
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL B	SHEET 18

Devices types 01 and 02 查询"5962-8953201XA"供应商 CHANNEL A BUS BUFFER TRANSMIT HOLDING REG TxDA TRANSMIT OPERATIONAL SHIFT REGISTER CONTROL **RDN** RECEIVE WRN -HOLDING REG **ADDRESS** CEN. (3) DECODE - RxDA RECEIVE A0-A3-4 SHIFT REG R/W CONTROL RESET -MRA1, 2 CRA SRA INTERRUPT CONTROL TxDB CHANNEL B IMR INTRN__ (AS ABOVE) ISR - RxDB IP2 FOR DEVICE INPUT PORT BUS TYPE OI CHANGE OF 1/ /7 IPO-IP6 DATA STATE TIMING DETECTORS (4) TIMING FOR DEVICE TYPE BAUDRATE INTERNAL **IPCR** GENERATOR ACR CLOCK **SELECTORS** OUTPUT PORT COUNTER/ **FUNCTION** TIMER SELECT **√** ● 0P0-P07 X1/CLK_ LOGIC XTAL OSC X2 _ OPCR **CSRA** OPR **CSRB** ACR - Vcc **CTUR** - GND CTLR NOTE: Device type 01 does not have 7-bit input port and 8-bit output port (see 6.6 pin descriptions). FIGURE 3. Block diagram. SIZE 5962-89532 **STANDARDIZED** A MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER SHEET REVISION LEVEL DAYTON, OHIO 45444 19




NOTES:

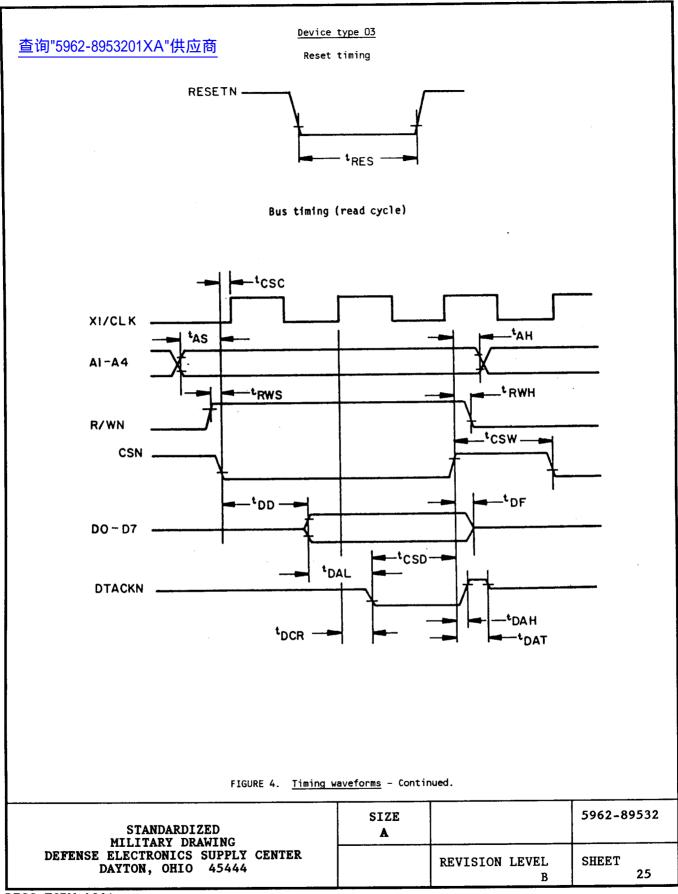

- INTRN or OP3 OP7 when used as interrupt outputs.
 The test for open drain outputs is intended to guarantee switching of the output transistor.
 Measurement of the response is referenced from the midpoint of the switching signal, V_M, to
 a point 0.5 V above V_{OL}. This point represents noise margin that assures true switching has
 occurred. Beyond this level, the effects of external circuitry and test environment are
 pronounced and can greatly affect the resultant measurement.

FIGURE 4. <u>Timing waveforms</u> - Continued.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-89532
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET 22

Device type 03

Bus timing (write cycle)

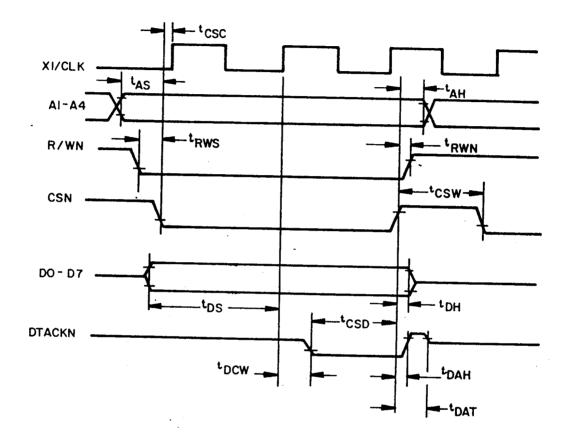
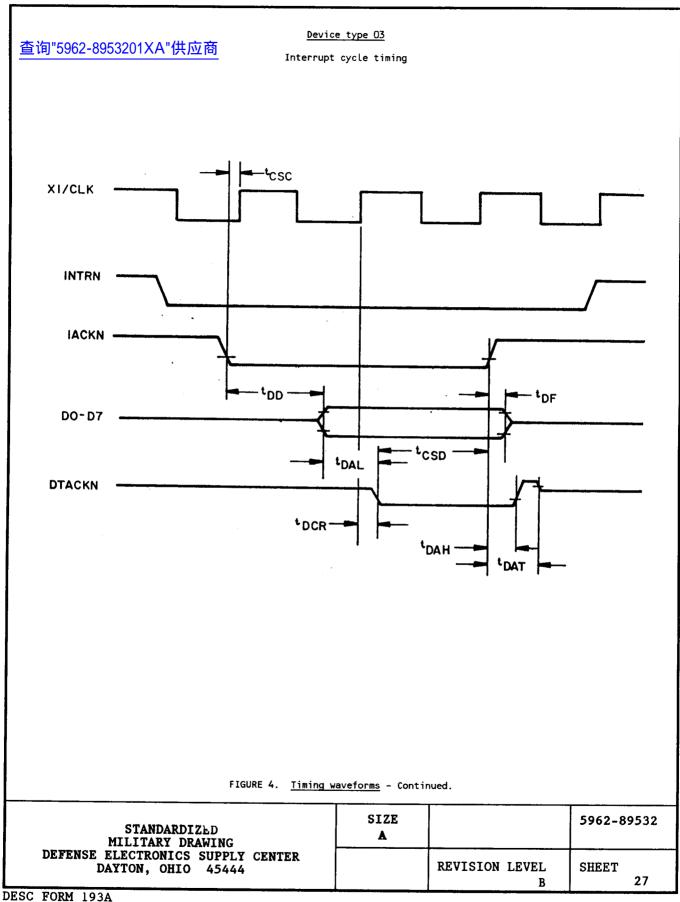
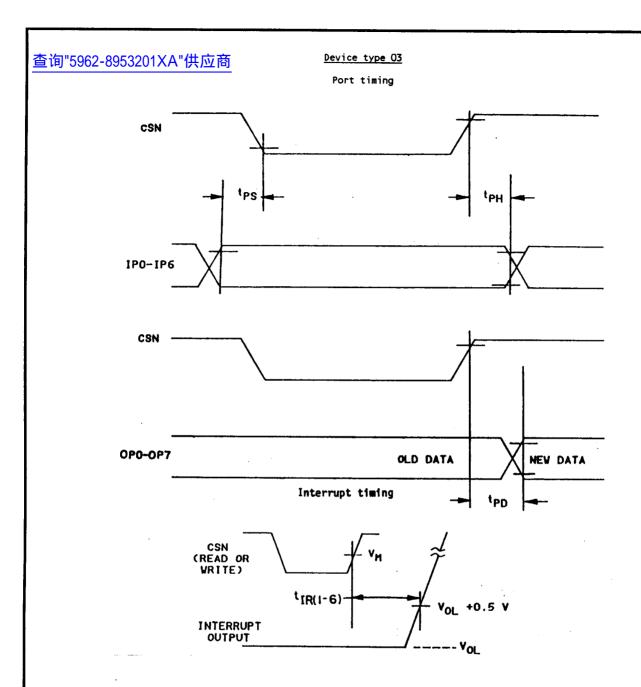
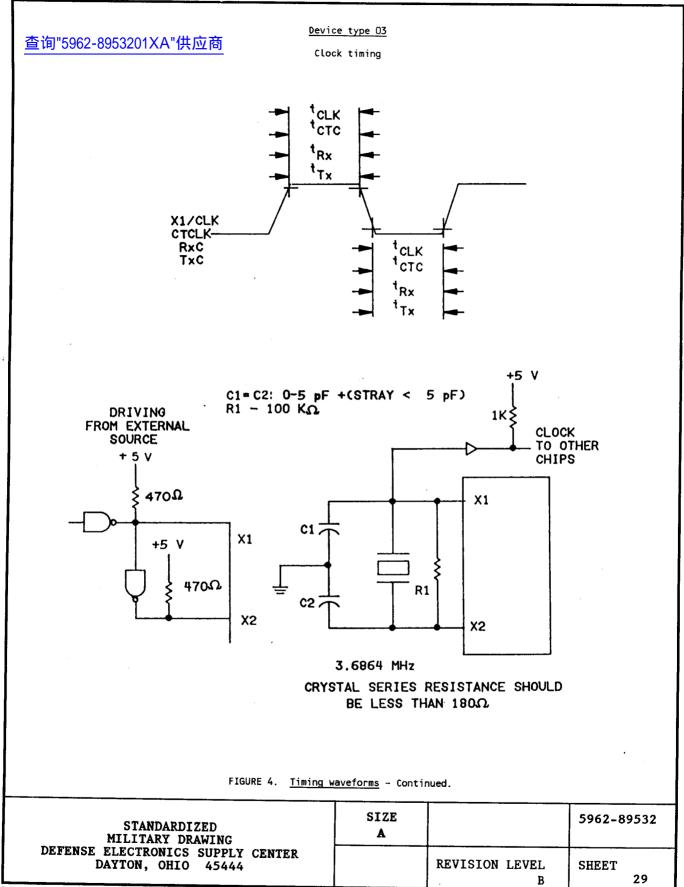
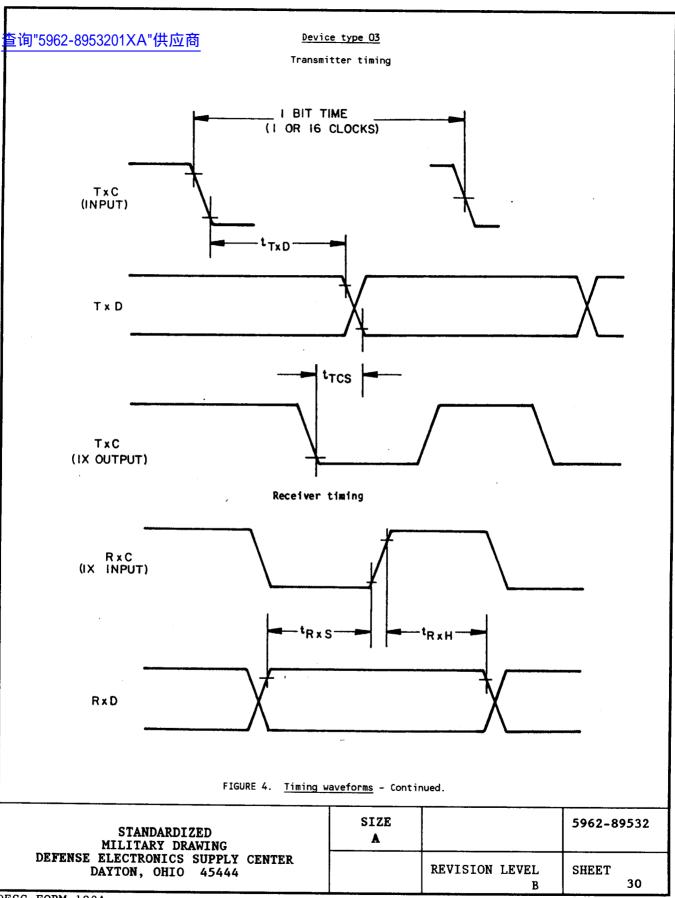




FIGURE 4. <u>Timing waveforms</u> - Continued.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-89532
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL B	SHEET 26




NOTES:

- INTRN or OP3 OP7 when used as interrupt outputs.
 The test for open drain outputs is intended to guarantee switching of the output transistor. Measurement of the response is referenced from the midpoint of the switching signal, $V_{\rm M}$, to a point 0.5 V above $V_{\rm QL}$. This point represents noise margin that assures true switching has occurred. Beyond this level, the effects of external circuitry and test environment are pronounced and can greatly affect the resultant measurement.

FIGURE 4. Timing waveforms - Continued.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-89532
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL B	SHEET 28

- 3.9 <u>Verification and review</u>. DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation stell the small and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation.
 - 4. QUALITY ASSURANCE PROVISIONS
- 4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with section 4 of MIL-M-38510 to the extent specified in MIL-STD-883 (see 3.1 herein).
- 4.2 <u>Screening</u>. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:
 - a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A or D using the circuit submitted with the certificate of compliance (see 3.6 herein).
 - (2) $T_A = +125$ °C, minimum.
 - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.
- 4.3 Quality conformance inspection. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.
 - 4.3.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 5 and 6 in table I, method 5005 of MIL-STD-883 shall be omitted.
 - c. Subgroup 4 (C_{IN} measurement) shall be measured only for the initial test and after process or design changes which may affect input capacitance. A minimum sample size of 5 devices with zero rejects shall be required.
 - d. Subgroups 7 and 8 shall verify the instruction set. The instruction set forms a part of the vendors test tape and shall be maintained and available from the approved sources of supply.

TABLE II. Electrical test requirements.

MIL-STD-883 test requirements	Subgroups (per method 5005, table I) 1/
 Interim electrical parameters (method 5004)	1
Final electrical test parameters (method 5004)	1 ^{2/} ,2,3,7,8, 9,10,11
Group A test requirements (method 5005)	1,2,3,7,8,9,
Groups C and D end-point electrical parameters (method 5005)	1,2,3

^{1/} Any subgroup at the same temperature may be combined using a multifunction tester.

2/ PDA applies to subgroup 1.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-89532
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL B	SHEET 31

查询¹⁵536<u>2c999532@ndxp\fn\$bectrons</u>.

- a. End-point electrical parameters shall be as specified in table II herein.
- b. Steady-state life test conditions, method 1005 of MIL-STD-883.
 - (1) Test condition A or D using the circuit submitted with the certificate of compliance (see 3.6 herein).
 - (2) $T_{\Delta} = +125^{\circ}C$, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.
- 5. PACKAGING
- 5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-M-38510.
- 6. NOTES
- 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use when military specifications do not exist and qualified military devices that will perform the required function are not available for OEM application. When a military specification exists and the product covered by this drawing has been qualified for listing on QPL-38510, the device specified herein will be inactivated and will not be used for new design. The QPL-38510 product shall be the preferred item for all applications.
- 6.2 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
- 6.3 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished in accordance with MIL-STD-481 using DD Form 1693, Engineering Change Proposal (Short Form).
- 6.4 <u>Record of users</u>. Military and industrial users shall inform Defense Electronics Supply Center when a system application requires configuration control and the applicable SMD. DESC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronics devices (FSC 5962) should contact DESC-ECC, telephone (513) 296-6022.
- 6.5 Comments on this drawing should be directed to DESC-ECC, Dayton, Ohio 45444, or telephone (513) 296-5375.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-89532
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL B	SHEET 32

6.6 Pin descriptions for device types 01 and 02. 查询"5962-8953201XA"供应商

_ ,	-) 0002-00	1002	Pack:	age.	477/-	7 2 	
	Mnemonic	ــــــــــــــــــــــــــــــــــــــ	ber o		ine	Туре	Name and function
			40		52		Raine and Tunecton
		 -	Dev			ľ	
		01	02		02	Ī	
,	DO-D7	 x 	X	X	X	1/0	DATA BUS:Bidirectional three-state data bus used to transfer commands, data and status between the DUART and the CPU. DO is the least significant bit.
	CEN	х	X	х	х	I	CHIP ENABLE: Active low input signal. When low, data trans- fers between the CPU and the DUART are enabled on DO-D7 as controlled by the WRN, RDN and AO-A3 inputs. When high, places the DO-D7 lines in three-state condition.
	WRN	х	х	х	х	I	WRITE STROBE: When low and CEN is also low, the contents of the data bus are loaded into the addressed register. The transfer occurs on the rising edge of the signal.
	RDN	х	х	х	х	I	READ STROBE: When low and CEN is also low, causes the contents of the addressed register to be presented on the data bus. The read cycle begins on the falling edge of RDN.
	AO-A3	X	х	Х	X	I	ADDRESS INPUTS: Select the DUART internal registers and ports for read/write operations.
	RESET	x	х	x	X	I	RESET: A high level clears internal registers (SRA, SRB, IMR, ISR, OPR, OPCR), puts OPO-OP7 in the high state, stops the counter/timer, and puts channels A and B in the inactive state, with the TxDA and TxDB outputs in the mark (high) state.
	INTRN	х	х	x	х	0	Interrupt Request: Active low, open drain, output which signals the CPU that one or more of the eight maskable inter-rupting conditions are true.
	X1/CLK	X	х	X	x	I	Crystal 1: Crystal or external clock input. A crystal or clock of the specified limits must be supplied at all times. When a crystal is used, a capacitor must be connected from this pin to ground (see figure 8).

STANDARDIZED MILITARY DRAWING	SIZE A		5962-89532
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL B	SHEET 33

6.6 Pin descriptions for device types 01 and 02 - Continued.

Mnomenii		Pack			T	
Mnemonic		ber o			Туре	Name and function
	20	140		52		
	01	Dev 102	02	02	-	
	 		<u> </u>	- J-		
X2	X	X	х	x		Crystal 2: Connection for other side of the crystal. When a crystal is used, a capacitor must be connected from this pin to ground (see figure 8).
R×DA	х	X	X	х	I	Channel A Receiver Serial Data input: The least significant bit is received first. "Mark" is high, "space" is low.
R×DB	x	х	х	х	I	Channel B Receiver Serial Data input: The least significant bit is received first. "Mark" is high, "space" is low.
TxDA	X	X	х	х	0	Channel A transmitter Serial Data Output: The least significant bit is transmitted first. This output is held in the "Mark" condition when the transmitter is disabled, idle, or when operating in local loopback mode. "Mark" is high, "space" is low.
TxDB	X	х	х	х	0	Channel B Transmitter Serial Data Output: The least significant bit is transmitted first. This output is held in the "Mark" condition when the transmitter is disabled, idle, or when operating in local loopback mode. "Mark" is high, "space" is low.
OPO	х	х	х	х	0	Output O: General purpose output, or channel A request to send (RTSAN, active low). Can be deactivited automatically on receive or transmit.
OP1	х	х	х	X	0	Output 1: General purpose output, or channel B request to send (RTSBN, active low). Can be deactivated automatically on receive or transmit.
OP2		х	х	x	0	Output 2: General purpose output, or channel A transmitter 1X or 16X clock output, or channel A receiver 1X clock output
0P3		х	х	х	0	Output 3: General purpose output, or open drain, active low counter/timer output, or channel B transmitter 1X clock output, or channel B receiver 1X clock output.
OP4		х	х	x	0	Output 4: General purpose output, or channel A open drain, active low, RxRDYA/FFULLA output.
OP5		х	х	х	0	Output 5: General purpose output, or channel B open drain, active low, RxRDYB/FFULLB output.
OP6		х	X	х	0	Output 6: General purpose output, or channel A open drain, active low, TxRDYA output.
OP7		X	х	х	0	Output 7: General purpose output, or channel B open drain, active low, TxRDYB output.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444	SIZE A		5962-89532
		REVISION LEVEL B	SHEET 34

6.6 Pin descriptions for device types 01 and 02 - Continued.

查询"5962-8953 Perkage 1/世 应商e					<mark>¦#</mark> ,	立意	Name and function	
	28 40 44 52 Device			52				
		01		02	02	L		
IPO			X	x	х	I	Input O: General purpose input, or channel A clear to send active low input (CTSAN).	
IP1			х	х	X	I	Input 1: General purpose input, or channel B clear to send active low input (CTSBN).	
IP2		Х	х	х	х	I	Input 2: General purpose input, or counter/timer external clock input.	
IP3			X	X	х	I	Input 3: General purpose input, or channel A transmitter external clock input (TxCA). When the external clock is used by the transmitter, the transmitted data is clocked on the falling edge of the clock.	
IP4			х	x	х	I	Input 4: General purpose input, or channel A receiver external clock input (RxCA). When the external clock is used by the receiver, the received data is sampled on the rising edge of the clock.	
IP5			х	х	х	I	Input 5: General purpose input, or channel B transmitter external clock input (TxCB). When the external clock is used by the transmitter, the transmitted data is clocked on the falling edge of the clock.	
IP6			х	х	х	I	Input 6: General purpose input, or channel B receiver external clock input (RxCB). When the external clock is used by the receiver, the received data is sampled on the rising edge of the clock.	
v _{cc}		х	х	х	х	I	Power supply: +5 V supply input.	
GND		X	Х	x	х	I	Ground.	
<u>i </u>				لــــا	i			

STANDARDIZED MILITARY DRAWING	SIZE A		5962-89532
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL B	SHEET 35

6.6 Pin descriptions for device type 03. 询"5962-8953201XA"供应商

宜问"	5962-895 0	<u> </u>	<u> 坐 </u>	l
	Mnemonic	Pin no. <u>1</u> /	Туре	Name and function
	DO-D7	25,16,24,17 23,18,22,19	1/0	DATA BUS: Bidirectional three-state data bus used to transfer commands, data and status between the DUART and the CPU. DO is the least significant bit.
	CSN	35	I	CHIP SELECT: Active low input signal. When low, data transfers between the CPU and the DUART are enabled on DO-D7 as controlled by the R/WN and A1-A4 inputs. When high, places the DO-D7 lines in the three-state condition.
	R/WN	8	I	READ/WRITE: A high input indicates a read cycle and a low input indicated a write cycle, when a cycle is initiated by assertion of the CSN input.
	A1-A4	1,3,5,6	1	Address inputs: Selects the DUART internal registers and ports for read/write operations.
	RESETN	34	1	Reset: A low clears internal registers (SRA,SRB,IMR,ISR,OPR,OPCR), initializes the IVR to hex OF, puts OPO-OP7 in the high state, stops the counter/timer, and puts channel A and B in the inactive state, with the TxDA and TxDB outputs in the mark (high) state.
	DTACKN	9	0	Data Transfer Acknowledge: Three-state active low output asserted in write, read, or interrupt cycles to indicate proper transfer of data between the CPU and the DUART.
	INTRN	21	0	Interrupt Request: Active low, open drain output which signals the CPU that one or more of the eight maskable interrupting conditions are true.
	IACKN	37	I	Interrupt Acknowledge: Active low input indicating an interrupt acknowledge cycle. In response, the DUART will place the inter-rupt vector on the data bus and will assert DTACKN if it has an interrupt pending.
	X1/CLK	32	I	Crystal 1: Crystal or external clock input. A crystal or clock of the specified limits must be supplied at all times. If a crystal is used, a capacitor must be connected from this pin to ground (see figure 4).
	X2	33	I	Crystal 2: Connection for other side of the crystal. If a crystal is used, a capacitor must be connected from this pin to ground (see figure 4). If an external clock is used, this pin should be grounded.
	R×DA	31	I	Channel A Receiver Serial Data input: The least significant bit is received first. "Mark" is high, "space" is low.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-89532
DEFENSE ELECTRONICS SUPPLY CENTER		REVISION LEVEL	SHEET
DAYTON, OHIO 45444		B	36

6.6 Pin descriptions for device type 03 - Continued.

查询"5962-89	53201 <u>X 4</u> ,"1	共盛	Name and function
R×DB	10	I	Channel B Receiver Serial Data input: The least significant bit is received first. "Mark" is high, "space" is low.
TxDA	30	0	Channel A Transmitter Serial Data Output: The least significant bit is transmitted first. This output is held in the "mark" condition when the transmitter is disabled, idle, or when operating in local loopback mode. "Mark" is high, "space" is low.
TxDB	11	0	Channel B transmitter Serial Data Output: The least significant bit is transmitted first. This output is held in the "mark" condition when the transmitter is disabled, idle, or when operating in local loopback mode. "Mark" is high, "space" is low.
ОРО	29	0	Output O: General purpose output, or channel A request to send (RTSAN), active low). Can be deactivated automatically on receive or transmit.
OP1	12	0	Output 1: General purpose output or channel B request to send (RTSBN, active low). Can be deactivated automatically on receive or transmit.
OP2	28	0	Output 2: General purpose output, or channel A transmitter 1X or 16X clock output, or channel A receiver 1X clock output.
OP3	13	0	Output 3: General purpose output, or open drain, active low counter/timer output, or channel B transmitter 1X clock output, or channel B receiver 1X clock output.
OP4	27	0	Output 4: General purpose output, or channel A open drain, active low, RxRDYA/FFULLA output.
OP5	14	0	Output 5: General purpose output or channel B open drain, active low, RxRDYB/FFULLB output.
OP6	26	0	Output 6: General purpose output or channel A open drain, active low, TxRDYA output.
OP7	15	0	Output 7: General purpose output or channel B open drain, active low, TxRDYB output.
IPO	7	I	Input O: General purpose input, or channel A clear to send active low input (CTSAN).
IP1	4	I	Input 1: General purpose input, or channel B clear to send active low input (CTSBN).
IP2	36	I	Input 2: General purpose input, or channel B receiver external clock input (RxCB), or counter/timer external clock input. When the external clock is used by the receiver, the received data is sampled on the rising edge of the clock.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-89532
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL B	SHEET 37

查询"5<u>9AO destr300(60)6 Afb供的</u>面 type 03 - Continued.

Mnemonic	Pin no. <u>1</u> /	Туре	Name and function
IP3	2	I	Input 3: General purpose input, or channel A transmitter external clock input (TxCA). When the external clock is used by the transmitter, the transmitted data is clocked on the falling edge of the clock.
IP4	39	I 	Input 4: General purpose input, or channel A receiver external clock input (RxCA). When the external clock is used by the receiver, the received data is sampled on the rising edge of the clock.
IP5	38	I	Input 5: General purpose input, or channel A transmitter exter- nal clock input (TxCB). When the external clock is used by the transmitter, the transmitted data is clocked on the falling edge of the clock.
v _{cc}	40	I	Power supply: +5 V supply input.
GND	20	I	Ground.

 $[\]underline{1}/$ All pin numbers are for dual-in-line package except 52 pin flat package.

6.7 <u>Approved sources of supply</u>. Approved sources of supply are listed in MIL-BUL-103. The vendors listed in MIL-BUL-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DESC-ECC.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-89532
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL B	SHEET 38

DESC FORM 193A JUL 91