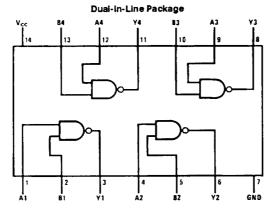
June 1989

54LS00/DM54LS00/DM74LS00 Quad 2-Input NAND Gates


General Description

This device contains four independent gates each of which performs the logic NAND function.

Features

Alternate Military/Aerospace device (54LS00) is available. Contact a National Semiconductor Sales Office/Distributor for specifications.

Connection Diagram

TL/F/6439-1

Order Number 54LS00DMQB, 54LS00FMQB, 54LS00LMQB, DM54LS00J, DM54LS00W, DM74LS00M or DM74LS00N See NS Package Number E20A, J14A, M14A, N14A or W14B

Function Table

$$Y = \overline{AB}$$

Inputs		Output		
A	В	Υ		
L	L	Н		
L	Н	Н		
Н	L	Н		
Н	н	L		

H = High Logic Level

L = Low Logic Level

Absolute Maximum Ratings (Note)

If Military the cospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage 7V Input Voltage 7V

Operating Free Air Temperature Range

DM54LS and 54LS -55°C to + 125°C DM74LS 0°C to + 70°C

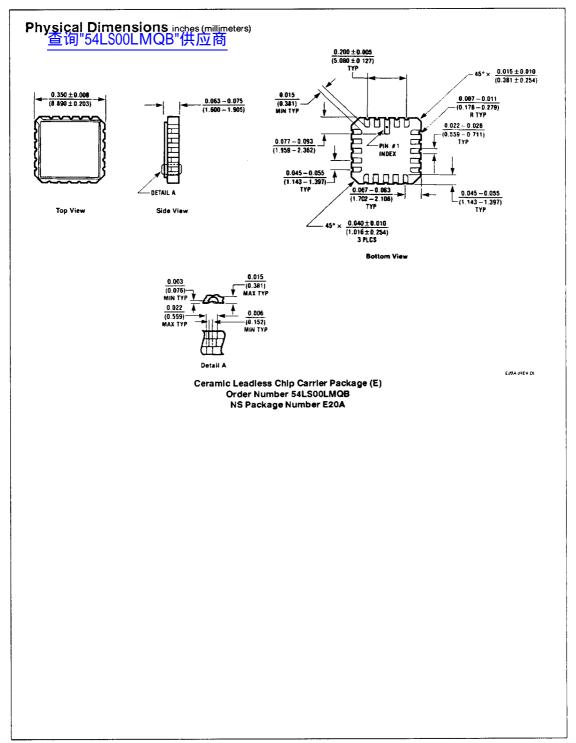
Storage Temperature Range -65°C to +150°C

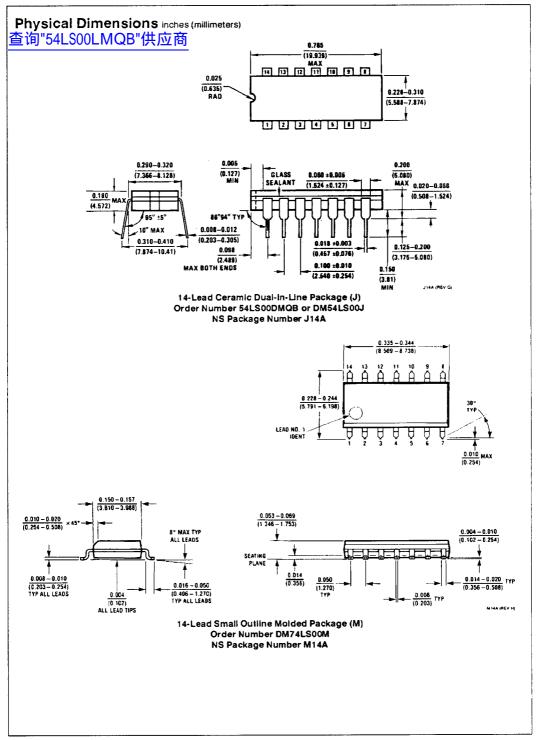
Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

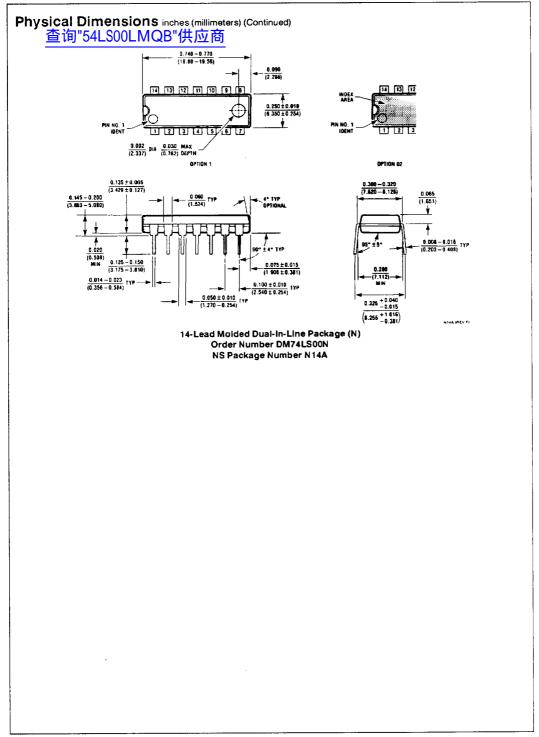
Recommended Operating Conditions

Symbol	Parameter	DM54LS00			DM74LS00			Units
		Min	Nom	Max	Min	Nom	Max	0,,,,,
Vcc	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.7			0.8	V
Юн	High Level Output Current			-0.4			-0.4	mA
loL	Low Level Output Current			4			8	mA
TA	Free Air Operating Temperature	-55		125	0		70	٠c

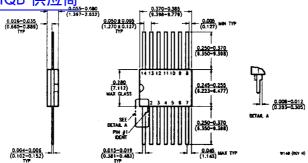
Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)


Symbol	Parameter	Conditions $V_{CC} = Min, I_{I} = -18 \text{ mA}$		Min	Typ (Note 1)	Max	Unite
VI	Input Clamp Voltage					- 1.5	٧
V _{OH} High Level Output Voltage	V _{CC} = Min, I _{OH} = Max, V _{IL} = Max	DM54	2.5	3.4		v	
		DM74	2.7	3.4] '	
VOL Low Level Output Voltage	V _{CC} = Min, I _{OL} = Max,	DM54		0.25	0.4		
	Voltage	V _{IH} = Min	DM74		0.35	0.5] v
	I _{OL} = 4 mA, V _{CC} = Min	DM74		0.25	0.4		
l _l	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 7V$				0.1	mA
liH	High Level Input Current	$V_{CC} = Max, V_1 = 2.7V$				20	μА
l _{IL}	Low Level Input Current	$V_{CC} = Max, V_1 = 0.4V$				- 0.36	mA
Short Circuit Output Current	99	DM54	- 20		- 100	mA	
		DM74	- 20		- 100		
Іссн	Supply Current with Outputs High	V _{CC} = Max			0.8	1.6	mA
^l ccL	Supply Current with Outputs Low	V _{CC} = Max			2.4	4.4	mA


Switching Characteristics at V_{CC} = 5V and T_A = 25°C (See Section 1 for Test Waveforms and Output Load)


Symbol	Parameter	$R_L = 2 k\Omega$				
		C _L =	15 pF	C _L = 50 pF		Units
		Min	Max	Min	Max]
t _{PLH}	Propagation Delay Time Low to High Level Output	3	10	4	15	ns
tрнL	Propagation Delay Time High to Low Level Output	3	10	4	15	ns

Note 1: All typicals are at V_{CC} = 5V, T_A = 25°C.


Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second

Physical Dimensions inches (millimeters) (Continued) 查询"54LS00LMQB"供应商

14-Lead Ceramic Flat Package (W) Order Number 54LS00FMQB or DM54LS00W NS Package Number W14B

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 2800 Semiconductor Drive P.O. 80x 58090 Santa Ciara, CA 95052-8090 Tel: (408) 721-5000 TWX: (910) 339-9240

National Semiconductor National Semiconductor GmbH Westendstrasse 193-195 D-8000 Munchen 21 West Germany Tel: (089) 5 70 95 01 Telex: 522772 NS Japan Ltd. Sanseido Bidg. 5F 4-15 Nishi Shinjuku Shinjuku-Ku, Tokyo 180, Japan Tel: 3-299-7001 FAX: 3-299-7000

National Semiconductor Hationel Semiconductor Hong Kong Ltd. Southeast Asia Marketing Austin Tower, 4th Floor 22-26A Austin Avenue Tsimshatsui, Kowloon, H.K. Tel: 3-7231290, 3-7243645 Cable: NSSEAMKTG Telex: 52996 NSSEA HX

National Semicondutores Do Brasil Lida. Av. Brig. Faria Lima, 830 8 Andar 01452 Sao Paulo, SP. Brasil Tel: 65/11) 212-5066 Telex: 391-1131931 NSBR BR

National Semicondutores

National Semiconductor Mational Semiconductor (Australia) PTY, Ltd. 21/3 High Street Bayswater, Victoria 3153 Australia Tel: (03) 729-6333 Telex: AA32096

laboral does not assume any responsionity for use of any orculty described, no orcult patent licenses are implied and Nabonal reserves the right at any time without nobce to change said orculty and specifications @ 1989 National Semiconductor Corporation 6