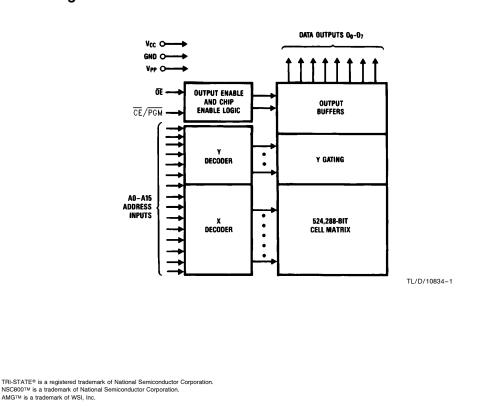


NM27C512 524,288-Bit (64K x 8) High Performance CMOS EPROM

General Description

The NM27C512 is a high performance 512K UV Erasable Electrically Programmable Read Only Memory (EPROM). It is manufactured using National's proprietary 0.8 micron CMOS AMGTM EPROM technology for an excellent combination of speed and economy while providing excellent reliability.

The NM27C512 provides microprocessor-based systems storage capacity for portions of operating system and application software. Its 90 ns access time provides nowait-state operation with high-performance CPUs. The NM27C512 offers a single chip solution for the code storage requirements of 100% firmware-based equipment. Frequently-used software routines are quickly executed from EPROM storage, greatly enhancing system utility.


The NM27C512 is configured in the standard JEDEC EPROM pinout which provides an easy upgrade path for systems which are currently using standard EPROMs.

The NM27C512 is one member of a high density EPROM Family which range in densities up to 4 Megabit.

Features

- High performance CMOS
- 90 ns access time
- Fast turn-off for microprocessor compatibility
- Manufacturers identification code
- JEDEC standard pin configuration
- 28-pin DIP package
 32-pin chip carrier
- 32-pin chip carrie

Block Diagram

© 1995 National Semiconductor Corporation TL/D/10834

RRD-B30M65/Printed in U. S. A.

NM27C512 524,288-Bit (64K x 8) High Performance CMOS EPROM

Connection Diagrams 27C080 27C040 27C020 27C010 27C256 27C256 27C010 27C020 27C040 27C080 DIP XX/V_{PP}XX/V_{PP}XX/V_{PP} NM27C512 A₁₉ V_{CC} XX/PGM V_{CC} XX/PGM V_{CC} V_{CC} A₁₆ A_{16} A_{16} A₁₆ A₁₈ A_{18} ΧХ A₁₅ A₁₅ A_{15} A_{15} V_{PP} V_{CC} A₁₇ A₁₇ A₁₇ A₁₂ A₁₂ A₁₂ A₁₂ A_{12} A_{14} A₁₄ A_{14} A_{14} A_{14} ۱₂ [A7 A7 A7 A7 A_7 26 🗖 A₁₃ -----A₁₃ A₁₃ A₁₃ A₁₃ A₁₃ A_6 A_6 A_6 A_6 A_6 25 🗖 A₈ - A_8 A₈ A_8 A_8 A_8 Α₅ A_5 A_5 A_5 A_5 24 🗖 A₉ -----A₉ A₉ A₉ A₉ A₉ A₁₁ OE A_4 A_4 A_4 A_4 A_4 23 A11 -A₁₁ OE A₁₁ OE A₁₁ OE A₁₁ OE/VPP A₃ A_3 A_3 A_3 A_3 22 D OE/VPP -A₁₀ CE A₁₀ CE A₁₀ CE/PGM A₁₀ CE/PGM A₂ A_2 A_2 A_2 A_2 21 A10 -A₁₀ CE/PGM A2 🗖 A_1 A_1 A_1 A₁ A_1 20 CE/PGM -A1 🗖 07 A₀ A₀ A₀ A₀ A₀ 19 07 -07 07 07 07 10 O0 O0 O0 O0 O0 18 0 06 -06 06 06 O₆ O₆ 0, □ 11 01 01 01 01 01 17 0 05 -05 05 05 05 05 0, 12 02 02 02 02 02 16 04 -04 04 04 04 04 - 0, 🗖 13 GND GND GND GND GND 15 🗖 0₃ 03 03 03 03 03 14

TL/D/10834-2

Note: Compatible EPROM pin configurations are shown in the blocks adjacent to the NM27C512 pins.

Commercial Temp Range (0°C to +70°C)

Parameter/Order Number	Access Time (ns)*
NM27C512 Q, N, V 90	90
NM27C512 Q, N, V 120	120
NM27C512 Q, N, V 150	150
NM27C512 Q, N, V 200	200

Military Temp Range (-55° C to $+125^{\circ}$ C)

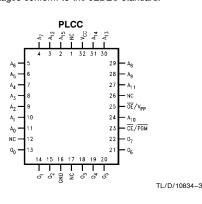
Parameter/Order Number	Access Time (ns)*
NM27C512 QM 200	200

Extended Temp Range (-40° C to $+85^\circ$ C)									
Parameter/Order Number	Access Time (ns)*								
NM27C512 QE, NE, VE 90	90								
NM27C512 QE, NE, VE 120	120								
NM27C512 QE, NE, VE 150	150								
NM27C512 QE, NE, VE 200	200								

Note: Surface mount PLCC package available for commercial and extended temperature ranges only.

*All versions are guaranteed to function for slower speeds.

Package Types: NM27C512 Q, N, V XXX


Q = Quartz-Windowed Ceramic DIP Package

N = Plastic OTP DIP Package

V = PLCC Package

• All packages conform to the JEDEC standard.

Pin Names						
A0-A15	Addresses					
CE	Chip Enable					
ŌĒ	Output Enable					
00-07	Outputs					
PGM	Program					
XX	Don't Care (During Read)					

查询"<u>NM27C512VE150"供应商</u>

V _{CC} Supply Voltage with Respect to Ground	-0.6V to +7V
ESD Protection (MIL Std. 883, Method 3015.2	2) >2000V
All Output Voltages with Respect to Ground	V_{CC} + 1.0V to GND -0.6V

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Storage Temperature -65°C to +150°C

All Input Voltages Except A9 with Respect to Ground

V_{PP} and A9 with Respect to Ground

Operating Range										
Range	Temperature	v _{cc}	Tolerance							
Comm'l	0°C to +70°C	+5V	±10%							
Industrial	-40°C to +85°C	+5V	±10%							
Military	-55°C to +125°C	+ 5V	±10%							

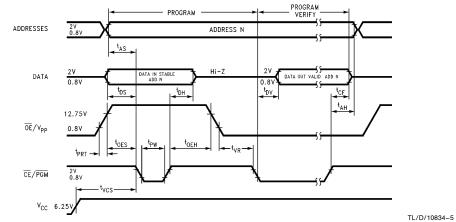
-0.6V to +7V

-0.7V to +14V

Read Operation

DC Electrical Characteristics

Symbol	Parameter	Test Conditions	Min	Max	Units
V _{IL}	Input Low Level		-0.5	08	V
VIH	Input High Level		2.0	$V_{CC} + 1$	V
VOL	Output Low Voltage	$I_{OL} = 2.1 \text{ mA}$		0.4	V
V _{OH}	Output High Voltage	$I_{OH} = -2.5 \text{ mA}$	3.5		V
I _{SB1}	V _{CC} Standby Current (CMOS)	$\overline{\text{CE}} = \text{V}_{\text{CC}} \pm 0.3 \text{V}$		100	μΑ
I _{SB2}	V _{CC} Standby Current	$\overline{CE} = V_{IH}$		1	mA
I _{CC1}	V _{CC} Active Current	$\overline{CE} = \overline{OE} = V_{IL}$ f = 5 MHz		40	mA
I _{CC2}	V _{CC} Active Current CMOS Inputs	$\label{eq:cell} \begin{array}{l} \overline{CE} = \mbox{GND}, \mbox{f} = 5 \mbox{ MHz} \\ \mbox{Inputs} = \mbox{V}_{CC} \mbox{ or GND}, \mbox{I/O} = 0 \mbox{ mA} \\ \mbox{C}, \mbox{I Temp Ranges} \end{array}$		35	mA
IPP	V _{PP} Supply Current	$V_{PP} = V_{CC}$		10	μΑ
V _{PP}	V _{PP} Read Voltage		V _C - 0.7	V _{CC}	V
ILI	Input Load Current	$V_{IN} = 5.5V \text{ or GND}$	-1	1	μΑ
ILO	Output Leakage Current	$V_{OUT} = 5.5V \text{ or GND}$	-10	10	μΑ

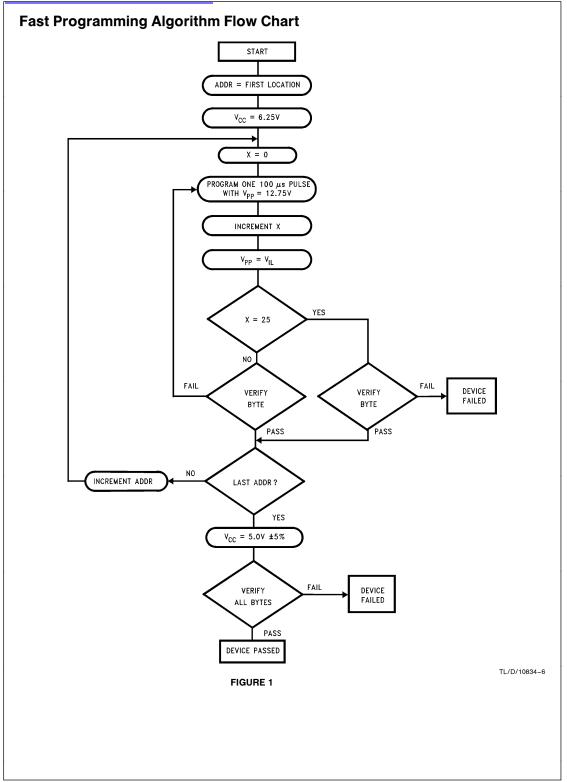

AC Electrical Characteristics

Symbol	Parameter	9	90		120		150		200	
Symbol	Falameter	Min	Max	Min	Max	Min	Max	Min	Max	Units
t _{ACC}	Address to Output Delay		90		120		150		200	
t _{CE}	CE to Output Delay		90		120		150		200]
t _{OE}	OE to Output Delay		40		50		50		50	
t _{DF}	Output Disable to Output Float		35		25		45		55	ns
t _{ОН}	Output Hold from Addresses, CE or OE, Whichever Occurred First	0		0		0				

Dutput Load 1 TTL Gate and $C_L = 100 \text{ pF}$ (Note 8) $C_L = 100 p$	$\frac{\boxed{C_{ N }}{C_{ N }} nput Capacitance}{except \overline{OE}/V_{PP}} V_{ N } = 0V 6 12 pF$ $\frac{C_{0UT}}{C_{0UT}} Output Capacitance} V_{OUT} = 0V 9 12 pF$ $\frac{C_{0UT}}{C_{N2}} \overline{OE}/V_{PP} nput} V_{ N } = 0V 20 25 pF$ AC Test Conditions Output Load $1 \text{ TTL Gate and} Timing Measurement Reference Leven and the second of the second o$	$\frac{\boxed{C_{ N 1}} \qquad nput Capacitance}{except \overrightarrow{OE}/V_{Pp}} \qquad V_{ N } = 0V \qquad 6 \qquad 12 \qquad pF$ $\frac{C_{OUT}}{C_{ N 2}} \qquad Output Capacitance \qquad V_{OUT} = 0V \qquad 9 \qquad 12 \qquad pF$ $\frac{C_{ N 2}}{C_{ N 2}} \qquad \overrightarrow{OE}/V_{Pp} \qquad nput} \qquad V_{ N } = 0V \qquad 20 \qquad 25 \qquad pF$ AC Test Conditions Output Load $1 \ TTL Gate and C_L = 100 \ pF (Note 8) \qquad nputs \\ Output S$ $C_L = 100 \ pF (Note 8) \qquad nput S$ $C_L = 100 \ pF (Note 8) \qquad nput S$ $C_L = 100 \ pF (Note 8) \qquad nput S$ $C_L = 100 \ pF (Note 8) \qquad nput S$ $C_L = 100 \ pF (Note 8) \qquad nput S$ $C_L = 100 \ pF (Note 8) \qquad nput S$ $C_L = 100 \ pF (Note 8) \ nput S$ $C_L = 100 \ pF (Note 8) \ nput S$ $C_L = 100 \ pF (Note 8) \ nput S$ $C_L = 100 \ pF (Note 8) \ nput S$ $C_L = 100 \ pF (Note 8) \ nput S$ $C_L = 100 \ pF (Note 8) \ nput S$ $C_L = 100 \ pF (Note 8) \ nput S$ $C_L = 100 \ pF (Note 8) \ nput S$ $C_L = 100 \ pF (Note 8) \ nput S$ $C_L = 100 \ pF (No$		• IA = 125 C	;, f = 1 MHz (Note 2)				
$\frac{ }{ $	$\frac{ }{ $	$\frac{ }{ $		Symbol	Parameter	Conditions	Тур	Max	Units
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		C _{IN1}		$V_{\text{IN}} = 0V$	6	12	pF
Capacitance 20 23 pr AC Test Conditions 1 TTL Gate and $C_L = 100 \text{ pF}$ (Note 8) Inputs Dutput Load 1 TTL Gate and $C_L = 100 \text{ pF}$ (Note 8) Inputs onput Rise and Fail Times $\leq 5 \text{ ns}$ Outputs nput Pulse Levels $0.45V \text{ to } 2.4V$ Outputs AC Waveforms (Notes 6, 7) Image: Comparison of the comparison of thecomparison of the comparison of the comparison of thec	Capacitance 20 23 pr AC Test Conditions 1 TTL Gate and $C_L = 100 \text{ pF}$ (Note 8) Inputs Dutput Load 1 TTL Gate and $C_L = 100 \text{ pF}$ (Note 8) Inputs onput Rise and Fail Times $\leq 5 \text{ ns}$ Outputs nput Pulse Levels $0.45V \text{ to } 2.4V$ Outputs AC Waveforms (Notes 6, 7) Image: Comparison of the comparison of thecomparison of the comparison of the comparison of thec	Capacitance 20 23 pr AC Test Conditions 1 TTL Gate and $C_L = 100 \text{ pF}$ (Note 8) Inputs Dutput Load 1 TTL Gate and $C_L = 100 \text{ pF}$ (Note 8) Inputs onput Rise and Fail Times $\leq 5 \text{ ns}$ Outputs nput Pulse Levels $0.45V \text{ to } 2.4V$ Outputs AC Waveforms (Notes 6, 7) Image: Comparison of the comparison of thecomparison of the comparison of the comparison of thec		C _{OUT}	Output Capacitance	$V_{OUT} = 0V$	9	12	pF
Dutput Load 1 TTL Gate and $C_L = 100 \text{ pF}$ (Note 8) $C_L = 100 p$	Dutput Load 1 TTL Gate and $C_L = 100 \text{ pF}$ (Note 8) Inputs Outputs Output Outp	Dutput Load 1 TTL Gate and $C_L = 100 \text{ pF}$ (Note 8) Inputs Outputs Output Outp		C _{IN2}		$V_{IN} = 0V$	20	25	pF
$\overline{CE} = 2.0^{V}$ $\overline{OE}/V_{PP} = 2.0^{V}$ \overline	Note 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stre \overline{OE} / V_{PP} $\overline{0.8V}$	Note 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stre \overline{OE} / V_{PP} $\overline{0.8V}$ $\overline{V_{ACC}}$ $\overline{V_{ACC}}$ $\overline{V_{ALID}}$ \overline{OUTPUT} $\overline{V_{ALID}}$ $\overline{V_{ALID}}$ \overline{OUTPUT} $\overline{V_{ACC}}$ $\overline{V_{ACC}}$ $\overline{V_{ALID}}$ V_{ALI	Output Load Input Rise and Fall T Input Pulse Levels	ïmes	$C_L = 100 \text{ pF}$ (Note 8) $\leq 5 \text{ ns}$ 0.45V to 2.4V	Inputs		nent Refe	erence Le
$\overline{OE} = 0.8V$ $\overline{OE}/V_{PP} = 2.0V$ \overline{OE}	Note 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stree operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not i maximum rating conditions for extended periods may affect device reliability. Note 2: This parameter is only sampled and is not 100% tested. Note 3: DE may be delayed up to $t_{ACC} - t_{OE}$ after the falling edge of CE without impacting t_{ACC} . Note 4: The t_{DF} and t_{CF} compare level is determined as follows: High to TRI-STATE, the measured V_{OL1} (DC) $- 0.10V$; Low to TRI-STATE, the measured V_{OL1} (DC) $+ 0.10V$. Note 5: TRI-STATE, the measured V_{OL1} (DC) $+ 0.10V$. Note 5: TRI-STATE may be attained using \overline{OE} or \overline{CE} . Note 6: The power switching characteristics of EPROMs require careful device decoupling. It is recommended that at least a 0.1 μ F or very device between V_{CC} and GND. Note 7: The outputs must be restricted to $V_{CC} + 1.0V$ to avoid latch-up and device damage. Note 8: 1 TTL Gate: $t_{OL} = 1.6$ mA, $t_{OH} = -400 \ \mu$ A. C_L : 100 pF includes fixture capacitance.	Note 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stresses above the device at these or any other conditions above those indicated in the operational sections of this specification is not i maximum rating conditions for extended periods may affect device reliability. Note 2: This parameter is only sampled and is not 100% tested. Note 3: The paraneter is only sampled and is not 100% tested. Note 4: The tpp and tcp compare level is determined as follows: High to TRI-STATE, the measured V _{OL1} (DC) – 0.10V; Low to TRI-STATE, the measured V _{OL1} (DC) – 0.10V; Low to TRI-STATE, the measured V _{OL1} (DC) – 0.10V; Note 5: TRI-STATE may be attained using \overline{OE} or \overline{CE} . Note 6: The power switching characteristics of EPROMs require careful device decoupling. It is recommended that at least a 0.1 μ F or every device between V _{CC} and GND. Note 7: The outputs must be restricted to V _{CC} + 1.0V to avoid latch-up and device damage. Note 8: 1 TTL Gate: I _{OL} = 1.6 mA, I _{OH} = $-400 \ \mu$ A. CL: 100 pF includes fixture capacitance.		_		S VALID	<u></u>		
$\begin{array}{c c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{$	Note 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stresses above the device at these or any other conditions above those indicated in the operational sections of this specification is not i maximum rating conditions for extended periods may affect device reliability. Note 2: This parameter is only sampled and is not 100% tested. Note 3: \overline{OE} may be delayed up to $_{ACC}{OE}$ after the falling edge of \overline{CE} without impacting t_{ACC} . Note 4: The t_{DF} and t_{CF} compare level is determined as follows: High to TRI-STATE, the measured V _{OL1} (DC) - 0.10V; Low to TRI-STATE, the measured V _{OL1} (DC) - 0.10V; Low to TRI-STATE, the measured V _{OL1} (DC) - 0.10V; Note 5: TRI-STATE may be attained using \overline{OE} or \overline{CE} . Note 6: The power switching characteristics of EPROMs require careful device decoupling. It is recommended that at least a 0.1 μ F of every device between V _{CC} and GND. Note 7: The outputs must be restricted to V _{CC} + 1.0V to avoid latch-up and device damage. Note 8: 1TTL Gate: $ _{OL} = 1.6 \text{ mA}$, $ _{OH} = -400 \mu A$. C_L : 100 pF includes fixture capacitance.	Note 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stresses above the device at these or any other conditions above those indicated in the operational sections of this specification is not in maximum rating conditions for extended periods may affect device reliability. Note 2: This parameter is only sampled and is not 100% tested. Note 3: \overline{OE} may be delayed up to $_{ACC}{OE}$ after the falling edge of \overline{CE} without impacting t_{ACC} . Note 4: The t_{DF} and t_{CF} compare level is determined as follows: High to TRI-STATE, the measured V _{OL1} (DC) - 0.10V; Low to TRI-STATE, the measured V _{OL1} (DC) - 0.10V; Low to TRI-STATE, the measured V _{OL1} (DC) - 0.10V; Note 5: TRI-STATE may be attained using \overline{OE} or \overline{CE} . Note 6: The power switching characteristics of EPROMs require careful device decoupling. It is recommended that at least a 0.1 μ F of every device between V _{CC} and GND. Note 7: The outputs must be restricted to V _{CC} + 1.0V to avoid latch-up and device damage. Note 8: 1TTL Gate: $ _{OL} = 1.6 \text{ mA}$, $ _{OH} = -400 \mu A$. C_L : 100 pF includes fixture capacitance.		CE 2.0	3V 1				← t _{CF} → NOTE 4,5)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Note 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stresses above these or any other conditions above those indicated in the operational sections of this specification is not i maximum rating conditions for extended periods may affect device reliability. Note 2: This parameter is only sampled and is not 100% tested. Note 3: \overline{OE} may be delayed up to $t_{ACC} - t_{DE}$ after the falling edge of \overline{CE} without impacting t_{ACC} . Note 4: The t_{DF} and t_{CF} compare level is determined as follows: High to TRI-STATE, the measured V_{OL1} (DC) - 0.10V; Low to TRI-STATE, the measured V_{OL1} (DC) + 0.10V. Note 5: TRI-STATE, the measured V_{OL1} (DC) + 0.10V. Note 6: The power switching characteristics of EPROMs require careful device decoupling. It is recommended that at least a 0.1 μ F of every device between V_{CC} and GND. Note 7: The outputs must be restricted to V_{CC} + 1.0V to avoid latch-up and device damage. Note 8: 1 TTL Gate: $I_{OL} = 1.6$ mA, $I_{OH} = -400 \ \mu$ A. C_L : 100 pF includes fixture capacitance.	Note 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stresses above these or any other conditions above those indicated in the operational sections of this specification is not i maximum rating conditions for extended periods may affect device reliability. Note 2: This parameter is only sampled and is not 100% tested. Note 3: \overline{OE} may be delayed up to $t_{ACC} - t_{DE}$ after the falling edge of \overline{CE} without impacting t_{ACC} . Note 4: The t_{DF} and t_{CF} compare level is determined as follows: High to TRI-STATE, the measured V_{OL1} (DC) - 0.10V; Low to TRI-STATE, the measured V_{OL1} (DC) + 0.10V. Note 5: TRI-STATE, the measured V_{OL1} (DC) + 0.10V. Note 6: The power switching characteristics of EPROMs require careful device decoupling. It is recommended that at least a 0.1 μ F of every device between V_{CC} and GND. Note 7: The outputs must be restricted to V_{CC} + 1.0V to avoid latch-up and device damage. Note 8: 1 TTL Gate: $I_{OL} = 1.6$ mA, $I_{OH} = -400 \ \mu$ A. C_L : 100 pF includes fixture capacitance.		0E/V _{PP} 0.3	toe				t _{DF}
lote 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a streperation of the device at these or any other conditions above those indicated in the operational sections of this specification is not in haximum rating conditions for extended periods may affect device reliability. lote 2: This parameter is only sampled and is not 100% tested. lote 3: \overline{OE} may be delayed up to $t_{ACC} - t_{OE}$ after the falling edge of \overline{CE} without impacting t_{ACC} . lote 4: The t_{DF} and t_{CF} compare level is determined as follows: High to TRI-STATE; the measured V _{OL1} (DC) - 0.10V; Low to TRI-STATE; the measured V _{OL1} (DC) - 0.10V; Low to TRI-STATE, the measured V _{OL1} (DC) + 0.10V. lote 5: TRI-STATE may be attained using \overline{OE} or \overline{CE} . lote 6: The power switching characteristics of EPROMs require careful device decoupling. It is recommended that at least a 0.1 μ F of very device between V _{CC} and GND. lote 7: The outputs must be restricted to V _{CC} + 1.0V to avoid latch-up and device damage. lote 8: 1TL Gate: $l_{OL} = 1.6 \text{ mA}$, $l_{OH} = -400 \mu$ A. C_L : 100 pF includes fixture capacitance.	Note 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stresse above those indicated in the operational sections of this specification is not i maximum rating conditions for extended periods may affect device reliability. Note 2: This parameter is only sampled and is not 100% tested. Note 3: \overline{OE} may be delayed up to $t_{ACC} - t_{OE}$ after the falling edge of \overline{CE} without impacting t_{ACC} . Note 4: The t_{DF} and t_{CF} compare level is determined as follows: High to TRI-STATE, the measured V _{OL1} (DC) - 0.10%; Low to TRI-STATE, the measured V _{OL1} (DC) - 0.10%. Note 5: TRI-STATE, the measured V _{OL1} (DC) + 0.10V. Note 5: TRI-STATE may be attained using \overline{OE} or \overline{CE} . Note 6: The power switching characteristics of EPROMs require careful device decoupling. It is recommended that at least a 0.1 μ F of every device between V _{CC} and GND. Note 7: The outputs must be restricted to V _{CC} + 1.0V to avoid latch-up and device damage. Note 6: 1TTL Gate: $I_{OL} = 1.6$ mA, $I_{OH} = -400 \ \mu$ A. C_L : 100 pF includes fixture capacitance.	Note 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stresse above those indicated in the operational sections of this specification is not i maximum rating conditions for extended periods may affect device reliability. Note 2: This parameter is only sampled and is not 100% tested. Note 3: \overline{OE} may be delayed up to $t_{ACC} - t_{OE}$ after the falling edge of \overline{CE} without impacting t_{ACC} . Note 4: The t_{DF} and t_{CF} compare level is determined as follows: High to TRI-STATE, the measured V _{OL1} (DC) - 0.10%; Low to TRI-STATE, the measured V _{OL1} (DC) - 0.10%. Note 5: TRI-STATE, the measured V _{OL1} (DC) + 0.10V. Note 5: TRI-STATE may be attained using \overline{OE} or \overline{CE} . Note 6: The power switching characteristics of EPROMs require careful device decoupling. It is recommended that at least a 0.1 μ F of every device between V _{CC} and GND. Note 7: The outputs must be restricted to V _{CC} + 1.0V to avoid latch-up and device damage. Note 6: 1TTL Gate: $I_{OL} = 1.6$ mA, $I_{OH} = -400 \ \mu$ A. C_L : 100 pF includes fixture capacitance.		OUTPUT 🗕	BV Hi-Z	VALID OUTPU	⊤_{}		
			speration of the device at maximum rating condition Note 2: This parameter is Note 3: \overline{OE} may be delay Note 4: The t_{DF} and t_{CF} of High to TRI-STATE, the Low to TRI-STATE, the Note 5: TRI-STATE may I Note 6: The power switch avery device between V_{CI} Note 7: The outputs must Note 8: 1 TTL Gate: I_{OL} : 100 pF includ	these or any others for extended per- sense of a solution of the sense of the sens	r conditions above those indicate iods may affect device reliability it is not 100% tested. D_E after the falling edge of \overline{CE} we termined as follows: (DC) - 0.10V; DC) + 0.10V. \overline{DC} or \overline{CE} . of EPROMs require careful device $C_C + 1.0V$ to avoid latch-up an $-400 \ \mu$ A. nce.	ed in the operational , , ithout impacting t _{AC} ce decoupling. It is re	sections of	this specifi	ication is no

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{AS}	Address Setup Time		1			μs
t _{OES}	OE Setup Time		1			μs
t _{DS}	Data Setup Time		1			μs
t _{VCS}	V _{CC} Setup Time		1			μs
t _{AH}	Address Hold Time		0			μs
t _{DH}	Data Hold Time		1			μs
t _{CF}	Chip Enable to Output Float Delay	$\overline{OE} = V_{IL}$	0		60	ns
t _{PW}	Program Pulse Width		95	100	105	μs
tоен	OE Hold Time		1			μs
t _{DV}	Data Valid from \overline{CE}	$\overline{OE} = V_{IL}$			250	ns
t _{PRT}	OE Pulse Rise Time during Programming		50			ns
t _{VR}	V _{PP} Recovery Time		1			μs
IPP	V _{PP} Supply Current during Programming Pulse	$ \overline{CE} = V_{IL} \\ \overline{OE} = V_{PP} $			30	mA
Icc	V _{CC} Supply Current				50	mA
T _R	Temperature Ambient		20	25	30	°C
V _{CC}	Power Supply Voltage		6	6.25	6.5	V
V _{PP}	Programming Supply Voltage		12.5	12.75	13	V
t _{FR}	Input Rise, Fall Time		5			ns
V _{IL}	Input Low Voltage			0	0.45	V
V _{IH}	Input High Voltage		2.4	4		V
t _{IN}	Input Timing Reference Voltage		0.8		2	V
t _{OUT}	Output Timing Reference Voltage		0.8		2	V

Programming Waveforms



Note 1: National's standard product warranty applies to devices programmed to specifications described herein.

Note 2: V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP} . The EPROM must not be inserted into or removed from a board with voltage applied to V_{PP} or V_{CC} .

Note 3: The maximum absolute allowable voltage which may be applied to the V_{PP} pin during programming is 14V. Care must be taken when switching the V_{PP} supply to prevent any overshoot from exceeding this 14V maximum specification. At least a 0.1 μ F capacitor is required across V_{CC} to GND to suppress spurious voltage transients which may damage the device.

Note 4: Programming and program verify are tested with the fast Program Algorithm at typical power supply voltages and timings.

Functional Description

DEVICE OPERATION

The six modes of operation of the EPROM are listed in Table I. It should be noted that all inputs for the six modes are at TTL levels. The power supplies required are V_{CC} and OE/V_{PP} . The OE/V_{PP} power supply must be at 12.75V during the three programming modes, and must be at 5V in the other three modes. The V_{CC} power supply must be at 6.25V during the three programming modes, and at 5V in the other three modes.

Read Mode

The EPROM has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable (CE/PGM) is the power control and should be used for device selection. Output Enable (OE/V_{PP}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (t_{ACC}) is equal to the delay from CE to output (t_{CE}). Data is available at the outputs t_{OE} after the falling edge of OE, assuming that CE has been low and addresses have been stable for at least t_{ACC}-t_{OE}.

Standby Mode

The EPROM has a standby mode which reduces the active power dissipation by over 99%, from 385 mW to 0.55 mW. The EPROM is placed in the standby mode by applying a CMOS high signal to the CE/PGM input. When in standby mode, the outputs are in a high impedance state, independent of the OE input.

Output Disable

The EPROM is placed in output disable by applying a TTL high signal to the OE input. When in output disable all circuitry is enabled, except the outputs are in a high impedance state (TRI-STATE).

Output OR-Typing

Because the EPROM is usually used in larger memory arrays, National has provided a 2-line control function that accommodates this use of multiple memory connections. The 2-line control function allows for:

- a) the lowest possible memory power dissipation, and
- b) complete assurance that output bus contention will not occur.

To most efficiently use these two control lines, it is recommended that CE/PGM be decoded and used as the primary device selecting function, while OE/Vpp be made a common connection to all devices in the array and connected to the READ line from the system control bus.

This assures that all deselected memory devices are in their low power standby modes and that the output pins are active only when data is desired from a particular memory device.

Programming

CAUTION: Exceeding 14V on pin 22 (OE/V_PP) will damage the EPROM.

Initially, and after each erasure, all bits of the EPROM are in the "1's" state. Data is introduced by selectively programming "0's" into the desired bit locations. Although only "0's" will be programmed, both "1's" and "0's" can be presented in the data word. The only way to change a "0" to a "1" is by ultraviolet light erasure. The EPROM is in the programming mode when the OE/V_{PP} is at 12.75V. It is required that at least a 0.1 μ F capacitor be placed across V_{CC} to ground to suppress spurious voltage transients which may damage the device. The data to be programmed is applied 8 bits in parallel to the data output pins. The levels required for the address and data inputs are TTL.

When the address and data are stable, an active low, TTL program pulse is applied to the CE/PGM input. A program pulse must be applied at each address location to be programmed.

The EPROM is programmed with the Fast Programming Algorithm shown in *Figure 1*. Each Address is programmed with a series of 100 μ s pulses until it verifies good, up to a maximum of 25 pulses. Most memory cells will program with a single 100 μ s pulse.

The EPROM must not be programmed with a DC signal applied to the CE/PGM input.

Programming multiple EPROM in parallel with the same data can be easily accomplished due to the simplicity of the programming requirements. Like inputs of the parallel EPROM may be connected together when they are programmed with the same data. A low level TTL pulse applied to the CE/PGM input programs the paralleled EPROM.

Program Inhibit

Programming multiple EPROMs in parallel with different data is also easily accomplished. Except for CE/PGM all like inputs (including OE/V_{PP}) of the parallel EPROMs may be common. A TTL low level program pulse applied to an EPROM's CE/PGM input with OE/V_{PP} at 12.75V will program that EPROM. A TTL high level CE/PGM input inhibits the other EPROMs from being programmed.

Program Verify

A verify should be performed on the programmed bits to determine whether they were correctly programmed. The verify is accomplished with OE/V_{PP} and CE at V_{IL}. Data should be verified T_{DV} after the falling edge of CE.

AFTER PROGRAMMING

Opaque labels should be placed over the EPROM window to prevent unintentional erasure. Covering the window will also prevent temporary functional failure due to the generation of photo currents.

MANUFACTURER'S IDENTIFICATION CODE

The EPROM has a manufacturer's identification code to aid in programming. When the device is inserted in an EPROM programmer socket, the programmer reads the code and then automatically calls up the specific programming algorithm for the part. This automatic programming control is only possible with programmers which have the capability of reading the code.

The Manufacturer's Identification code, shown in Table II, specifically identifies the manufacturer and device type. The code for NM27C512 is "8F85", where "8F" designates that it is made by National Semiconductor, and "85" designates a 512K part.

The code is accessed by applying 12V $\pm 0.5V$ to address pin A9. Addresses A1-A8, A10-A16, and all control pins

Functional Description (Continued)

are held at V_{IL}. Address pin A0 is held at V_{IL} for the manufacturer's code, and held at V_{IH} for the device code. The code is read on the eight data pins, O₀-O₇. Proper code access is only guaranteed at 25°C \pm 5°C.

ERASURE CHARACTERISTICS

The erasure characteristics of the device are such that erasure begins to occur when exposed to light with wavelengths shorter than approximately 4000 Angstroms (Å). It should be noted that sunlight and certain types of fluorescent lamps have wavelengths in the 3000Å-4000Å range.

The recommended erasure procedure for the EPROM is exposure to short wave ultraviolet light which has a wavelength of 2537Å. The integrated dose (i.e., UV intensity \times exposure time) for erasure should be minimum of 15W-sec/cm².

The EPROM should be placed within 1 inch of the lamp tubes during erasure. Some lamps have a filter on their tubes which should be removed before erasure. Table III shows the minimum EPROM erasure time for various light intensities.

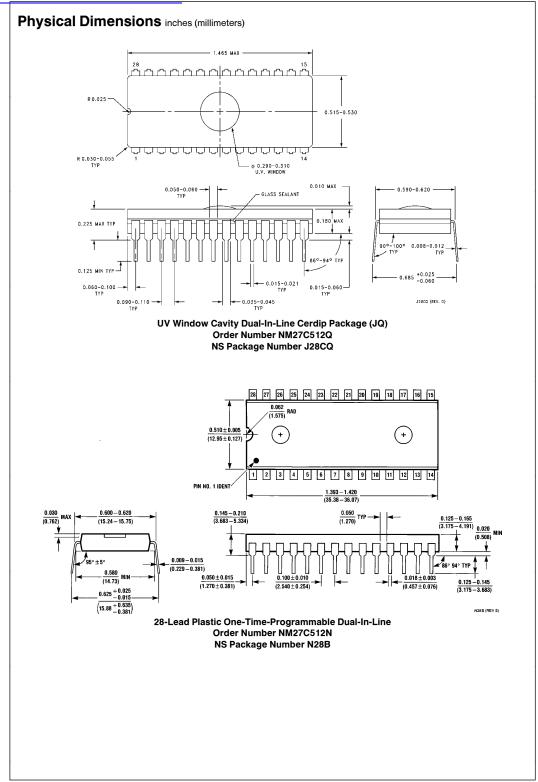
An erasure system should be calibrated periodically. The distance from lamp to device should be maintained at one inch. The erasure time increase as the square of the distance from the lamp (if distance is doubled the erasure time increases by factor of 4). Lamps lose intensity as they age.

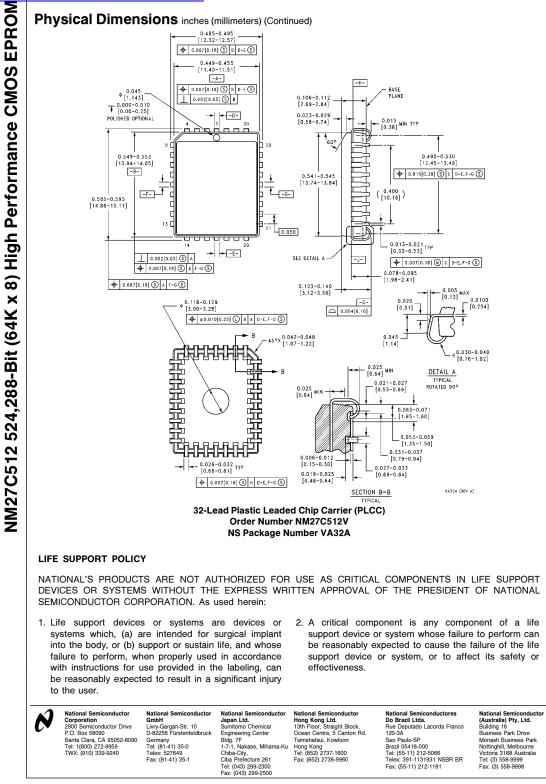
When a lamp is changed, the distance has changed, or the lamp has aged, the system should be checked to make certain full erasure is occurring. Incomplete erasure will cause symptoms that can be misleading. Programmers, components, and even system designs have been erroneously suspected when incomplete erasure was the problem.

SYSTEM CONSIDERATION

The power switching characteristics of EPROMs require careful decoupling of the devices. The supply current, I_{CC} , has three segments that are of interest to the system designer: the standby current level, the active current level, and the transient current peaks that are produced by voltage transitions on input pins. The magnitude of these transient current peaks is dependent of the output capacitance loading of the device. The associated V_{CC} transient voltage peaks can be suppressed by properly selected decoupling capacitors. It is recommended that at least a 0.1 µF ceramic capacitor be used on every device between $V_{\mbox{CC}}$ and GND. This should be a high frequency capacitor of low inherent inductance. In addition, at least a 4.7 µF bulk electrolytic capacitor should be used between $V_{\mbox{CC}}$ and GND for each eight devices. The bulk capacitor should be located near where the power supply is connected to the array. The purpose of the bulk capacitor is to overcome the voltage drop caused by the inductive effects of the PC board traces.

Mode Selection


The modes of operation of the NM27C512 are listed in Table I. A single 5V power supply is required in the read mode. All inputs are TTL levels excepts for V_{PP} and A9 for device signature.


TABLE I. Mode Selection									
Pins Mode	CE/PGM	OE/V _{PP}	v _{cc}	Outputs					
Read	V _{IL}	V _{IL}	5.0V	D _{OUT}					
Output Disable	X (Note 1)	V _{IH}	5.0V	High Z					
Standby	V _{IH}	х	5.0V	High Z					
Programming	V _{IL}	12.75V	6.25V	D _{IN}					
Program Verify	V _{IL}	V _{IL}	6.25V	D _{OUT}					
Program Inhibit	V _{IH}	12.75V	6.25V	High Z					

Note 1: X can be VIL or VIH.

TABLE II. Manufacturer's Identification Code

Pins	A0 (10)	A9 (24)	07 (19)	06 (18)	05 (17)	04 (16)	03 (15)	02 (13)	01 (12)	00 (11)	Hex Data
Manufacturer Code	VIL	12V	1	0	0	0	1	1	1	1	8F
Device Code	VIH	12V	1	0	0	0	0	1	0	1	85

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.