GERMANIUM POWER DEVICES 63E D ■ 3947375 0000578 863 ■ GPD ## GERMANIUM POWER TRANSISTORS | _{Typ} 查询"2
Number | N1291"供
Type | <u> </u> | $V_{EBO} V$ | h _{FE}
@I _C /V _{CE}
(Min-Max
@A/V) | V _{CE(sat)}
@I _C /I _B
(V@A/A) | V _{BE}
@I _C /V _{CE}
(V@A/V) | I _{CEV}
@V _{CE}
(mA@V) | $P_D @ \\ T_C = 25 ° C \\ (watts)$ | θ,c
(°C/W) | T _{J(max)} | f _T
(KHz) | | | |---|---|-----------------------------|----------------------------------|--|--|--|---|---------------------------------------|--|---------------------------------|--|--|--| | | 3 AMP GERMANIUM PNP (Cont.) | | | | | | | | | | | | | | 2N2668
2N2669
2N2670
2N1042
2N1043 | MT-27
MT-27
MT-27
MT-28
MT-28 | 30
40
50
30
40 | 20
20
20
20
20
20 | 50-150@.5/.5
50-150@.5/.5
50-150@.5/.5
20-60@3/1
20-60@3/1 | .25@.5/.025
.25@.5/.025
.25@.5/.025
.75@3/.3
.75@3/.3 | .6@.5/.5
.6@.5/.5
.6@.5/.5
1.5@3/1
1.5@3/1 | .6@50
.6@70
.6@90
.65@40
.65@60 | 15
15
15
20
20 | 5.0
5.0
5.0
3.75
3.75 | 100
100
100
100
100 | 300
300
300
250
250 | | | | 2N1044
2N1045
2N2556
2N2557
2N2558 | MT-28
MT-28
MT-28
MT-28
MT-28 | 50
60
30
40
50 | 20
20
20
20
20
20 | 20-60@3/1
20-60@3/1
20-60@1/.5
20-60@1/.5
20-60@1/.5 | .75@3/.3
.75@3/.3
.25@1/.1
.25@1/.1 | 1.5@3/1
1.5@3/1
1@1/.5
1@1/.5
1@1/.5 | .65@80
.65@100
.65@40
.65@60
.65@80 | 20
20
20
20
20
20 | 3.75
3.75
3.75
3.75
3.75 | 100
100
100
100
100 | 250
250
225
225
225
225 | | | | 2N2559
2N2282
2N2283
2N2284
2N3212 | MT-28
TO-37
TO-37
TO-37
TO-37 | 60
30
60
100
80 | 20
1.5
1.5
1.5
2.0 | 20-60@1/.5
30-75@.5/1
30-75@.5/1
30-75@.5/1
30-90@3/2 | .25@1/.1
.4@1/.05
.4@1/.05
.4@1/.05
.5@5/.5 | 1@1/.5
.7@1/.05
.7@1/.05
.7@1/.05
1.4@5/.5 | .65@100
.1@20
.1@40
.1@60
1@100 | 20
5.0
5.0
5.0
12.1 | 3.75
15
15
15
7.0 | 100
110
110
110
110 | 225
2500
2500
2500
2500
300 | | | | 2N3213
2N3214
2N3215
2N1183
2N1183A | TO-37
TO-37
TO-37
TO-8
TO-8 | 60
40
30
20
30 | 2.0
2.0
2.0
20
20 | 30-90@3/2
30-90@3/2
25-100@3/2
20-60@.4/2
20-60@.4/2 | .5@5/.5
.5@5/.5
.5@5/.5
.3@.4/.04
.5@.4/.04 | 1.4@5/.5
1.4@5/.5
1.4@5/.5
1.5@.4/2
1.5@.4/2 | 1@80
1@60
1@40
.25@45
.25@60 | 12.1
12.1
12.1
7.5
7.5 | 7.0
7.0
7.0
10 | 110
110
110
100
100 | 300
300
300
350
300 | | | | 2N1183B
2N1184
2N1184A
2N1184B
2N1755 | TO-8
TO-8
TO-8
TO-8
MS7 | 40
20
30
40
25 | 20
20
20
20
20
30 | 20-60@.4/2
40-120@.4/2
40-120@.4/2
40-120@.4/2
30-75@.5/2 | .5@.4/.04
.3@.4/.04
.5@.4/.04
.5@.4/.04
.7@3/.3 | 1.5@.4/2
1.5@.4/2
1.5@.4/2
1.5@.4/2
1@3/.3 | .25@80
.25@45
.25@60
.25@80
3@40 | 7.5
7.5
7.5
7.5
7.5
28 | 10
10
10
10
2.5 | 100
100
100
100
95 | 500
350
500
500 | | | | 2N1756
2N1757
2N1758
2N1759
2N1760 | MS7
MS7
MS7
MS7
MS7 | 40
55
65
25
40 | 30
30
30
30
30
30 | 30-75@.5/2
30-75@.5/2
30-75@.5/2
60-150@.5/2
60-150@.5/2 | .7@3/.3
.7@3/.3
.7@3/.3
.5@3/.3
.5@3/.3 | 1@3/.3
1@3/.3
1@3/.3
.8@3/.3
.8@3/.3 | 3@60
3@80
3@100
3@40
3@60 | 28
28
28
28
28
28 | 2.5
2.5
2.5
2.5
2.5
2.5 | 95
95
95
95
95 | | | | | 2N1761
2N1762
2N2067
2N2068 | MS7
MS7
MS7
MS7 | 55
25
25
25
55 | 30
30
20
20 | 60-150@.5/2
60-150@.5/2
20-100@.5/14
20-100@.5/14 | .5@3/.3
.5@3/.3
.7@1/.1
.7@1/.1 | .8@3/.3
.8@3/.3
.7@.5/14
.7@.5/14 | 3@80
3@40
3@40
3@80 | 28
28
28
28
28 | 2.5
2.5
2.5
2.5 | 95
95
95
95 | | | | | Type
Number | Case
Type | NPN
Comple-
ment | V _{CE)(nu)} | V _{EBO}
V | h _{FE}
@I _C /V _{CE}
(Min-Max
@A/V) | $V_{CE(sat)}$ $@I_c/I_B$ $(V@A/A)$ | V _{BE}
@I _C /V _{CE}
(V@A/V) | I _{CEV}
@V _{CE}
(mA@V) | $P_D@$ $T_C = 25^{\circ}C$ (watts) | θ _{rc}
(°C/W) | T _{J(max)} | |------------------------------------|----------------------------------|------------------------|---|-----------------------|--|--|--|--|------------------------------------|---------------------------|-------------------------| | | | | | | 3 AMP GE | RMANIUM PI | NP | 1 5 | | L | <u> </u> | | 2N156
2N158
2N158A
2N1078 | TO-13
TO-13
TO-13
TO-13 | 2N1332 | 30(V _{CES})
60(V _{CES})
60
60(V _{CES}) | 15
30
30
15 | >25@.5/2
>21@.5/2
>21@.5/2
>21@.5/2
>40@.5/2 | .75@1/.15
.75@1/.1
.75@1/.15
1@1/.1 | .7@.5/2
.85@.5/2
.85@.5/2
1.1@.5/2 | 1@30
1@60
1@80
1.5@60 | 25
25
25
20 | 3.0
3.0
3.0
3.0 | 100
100
100
85 | | 2N1328
2N1331
2N1333 | TO-13
TO-13
TO-13 | 2N1329
2N1334 | $30(V_{CES}) \ 80(V_{CES}) \ 100(V_{CES})$ | 15
15
15 | >40@.5/2
>40@.5/2
>40@.5/2 | 1@1/.1
1@1/.1
1@1/.1 | .9@.5/2
1.2@.5/2
1.2@.5/2 | 1.5@35
1.5@80
1.5@100 | 20
20
20 | 3.0
3.0
3.0 | 85
85
85 | | Type
Number | Case
Type | PNP
Comple-
ment | V _{CEO (sur)} | V _{EBO}
V | h _{FE}
@I _C /V _{CE}
(Min-Max
@A/V) | V _{CE(sat)}
@I _C /I _B
(V@A/A) | V_{BE} $@I_C/V_{CE}$ $(V@A/V)$ | I _{CEV}
@V _{CE}
(mA@V) | P_{D} @ $T_{C} = 25^{\circ}C$ (watts) | θ _{Jc}
(°C/W) | T _{J(max)} | |--|--------------------------------------|----------------------------|---|----------------------------|--|--|--|--|---|----------------------------------|---------------------------------| | 3 AMP GERMANIUM NPN | | | | | | | | | | | | | 2N1329
2N1330
2N1332
2N1334 | TO-13
TO-13
TO-13
TO-13 | 2N1328
2N1078
2N1331 | 30(V _{CES})
45(V _{CES})
60(V _{CES})
80(V _{CES}) | 15
15
15
15 | >30@.5/2
>30@.5/2
>30@.5/2
>30@.5/2 | 1@1/.135
1@1/.135
1@1/.135
1@1/.135 | 1@.5/2
1@.5/2
1@.5/2
1@.5/2 | 1@35
2@60
3@80
4@100 | 25
25
25
25
25 | 3.0
3.0
3.0
3.0 | 100
100
100
100 | | 2N1321
2N1323
2N1325
2N1327 | TO-10
TO-10
TO-10
TO-10 | 2N1320
2N1322
2N1324 | $\begin{array}{c} 30(V_{\mathit{CES}}) \\ 45(V_{\mathit{CES}}) \\ 60(V_{\mathit{CES}}) \\ 80(V_{\mathit{CES}}) \end{array}$ | 15
15
15
15 | >30@.5/2
>30@.5/2
>30@.5/2
>30@.5/2 | 1@1/.135
1@1/.135
1@1/.135
1@1/.135 | 1@.5/2
1@.5/2
1@.5/2
1@.5/2 | 1@35
1@60
1@80
1@100 | 25
25
25
25
25 | 3.0
3.0
3.0
3.0 | 100
100
100
100 | | 2N1218
2N1292
2N1294
2N1296
2N1298 | TO-3
TO-3
TO-3
TO-3
TO-3 | 2N1291
2N1293
2N1295 | $2()$ $30(V_{CES})$ $45(V_{CES})$ $60(V_{CES})$ $80(V_{CES})$ | 15
15
15
15
15 | 30-120@1/1.5
>30@.5/2
>30@.5/2
>30@.5/2
>30@.5/2
>30@.5/2 | 1@1/.05
1@1/.135
1@1/.135
1@1/.135
1@1/.135 | .5-1.5@1/1.5
1@.5/2
1@.5/2
1@.5/2
1@.5/2 | 1@30
1@35
2@60
3@80
4@100 | 20
25
25
25
25
25 | 2.75
3.0
3.0
3.0
3.0 | 100
100
100
100
100 | Germanium Power Devices Corporation