
查询***\$\\7**4**10**74A-FP"供应商

SCLS696-JANUARY 2006

FEATURES

- Controlled Baseline
 - One Assembly/Test Site, One Fabrication
 Site
- Extended Temperature Performance of 55°C to 125°C
- Enhanced Diminishing Manufacturing Sources (DMS) Support
- Enhanced Product-Change Notification
- Qualification Pedigree (1)
- 2-V to 5.5-V V_{CC} Operation
- Max t_{nd} of 13 ns at 5 V
- Typical V_{OLP} (Output Ground Bounce)
 <0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Typical V_{OHV} (Output V_{OH} Undershoot)
 >2.3 V at V_{CC} = 3.3 V, T_A = 25°C
- Supports Mixed-Mode Voltage Operation on All Ports
- I_{off} Supports Partial-Power-Down Mode Operation
- (1) Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.

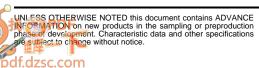
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

DESCRIPTION/ORDERING INFORMATION

These dual positive-edge-triggered D-type flip-flops are designed for 2-V to 5.5-V V_{CC} operation.

A low level at the preset (PRE) or clear (CLR) inputs sets or resets the outputs, regardless of the levels of the other inputs. When PRE and CLR are inactive (high), data at the data (D) inputs meeting the setup-time requirements is transferred to the outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold-time interval, data at the D input can be changed without affecting the levels at the outputs.

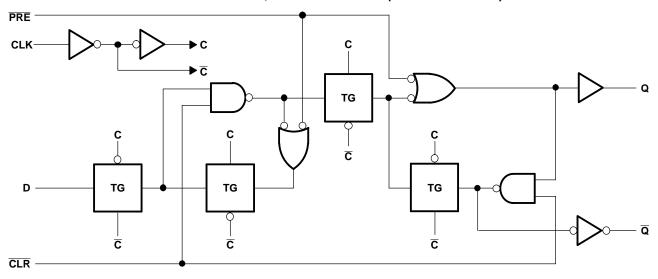
This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down.


ORDERING INFORMATION

T _A	PACKA	GE ⁽¹⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING
–55°C to 125°C	TSSOP – PW	Reel of 2000	SN74LV74AMPWREP	LV74AEP

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



FUNCTION TABLE

	INP	UTS		OUTI	PUTS
PRE	CLR	CLK	D	Q	Q
L	Н	Χ	Χ	Н	L
Н	L	Χ	Χ	L	Н
L	L	X	Χ	H ⁽¹⁾	H ⁽¹⁾
Н	Н	\uparrow	Н	Н	L
Н	Н	\uparrow	L	L	Н
Н	Н	L	Χ	Q_0	\overline{Q}_0

(1) This configuration is nonstable; that is, it does not persist when PRE or CLR returns to its inactive (high) level.

LOGIC DIAGRAM, EACH FLIP-FLOP (POSITIVE LOGIC)

SCLS696-JANUARY 2006

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	7	V
VI	Input voltage range ⁽²⁾		-0.5	7	V
Vo	Voltage range applied to any output in the	/oltage range applied to any output in the high-impedance or power-off state ⁽²⁾		7	V
Vo	Output voltage range ⁽²⁾⁽³⁾		-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V ₁ < 0		-20	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
Io	Continuous output current	$V_O = 0$ to V_{CC}		±25	mA
	Continuous current through V _{CC} or GND			±50	mA
θ_{JA}	Package thermal impedance (4)			113	°C/W
T _{stg}	Storage temperature range		-65	150	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

⁽²⁾ The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

⁽³⁾ This value is limited to 5.5 V maximum.

⁽⁴⁾ The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions⁽¹⁾

			MIN	MAX	UNIT
V_{CC}	Supply voltage		2	5.5	V
		V _{CC} = 2 V	1.5		
.,	High lavel inner value	V _{CC} = 2.3 V to 2.7 V	V _{CC} × 0.7		V
V_{IH}	High-level input voltage	$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$	V _{CC} × 0.7		V
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	V _{CC} × 0.7		
		V _{CC} = 2 V		0.5	
V	Low level input valtage	V _{CC} = 2.3 V to 2.7 V		$V_{\text{CC}}\times 0.3$	V
V_{IL}	Low-level input voltage	$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$		$V_{CC} \times 0.3$	V
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		$V_{CC} \times 0.3$	
VI	Input voltage		0	5.5	V
Vo	Output voltage		0	V_{CC}	V
		V _{CC} = 2 V		-50	μΑ
	High lavel output ourrest	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		-2	
I _{OH}	High-level output current	$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$		-6	mA
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		-12	
		V _{CC} = 2 V		50	μΑ
	Low lovel output ourrent	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		2	
l _{OL}	Low-level output current	$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$		6	mA
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		12	
		V _{CC} = 2.3 V to 2.7 V		200	
$\Delta t/\Delta v$	Input transition rise or fall rate	V _{CC} = 3 V to 3.6 V		100	ns/V
		V _{CC} = 4.5 V to 5.5 V		20	
T _A	Operating free-air temperature		-55	125	°C

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
	I _{OH} = -50 μA	2 V to 5.5 V	V _{CC} - 0.1			
V	$I_{OH} = -2 \text{ mA}$	2.3 V	2			V
V _{OH}	$I_{OH} = -6 \text{ mA}$	3 V	2.48			V
	I _{OH} = −12 mA	4.5 V	3.8			
	$I_{OL} = 50 \mu A$	2 V to 5.5 V			0.1	
V	$I_{OL} = 2 \text{ mA}$	2.3 V			0.4	V
V _{OL}	I _{OL} = 6 mA	3 V			0.44	V
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.55				
I _I	V _I = 5.5 V or GND	0 to 5.5 V			±1	μΑ
I _{CC}	$V_1 = V_{CC}$ or GND, $I_0 = 0$	5.5 V			20	μΑ
I _{off}	V_I or $V_O = 0$ to 5.5 V	0			5	μΑ
0	V V or CND	3.3 V		2		~F
C _i	VI = VCC OI GIND	5 V		2		pF

SCLS696-JANUARY 2006

Timing Requirements

over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1)

	PARAMETER	T _A = 25°C		MIN	MAX	UNIT		
	FARAIVIETER	S	MIN	MAX	IVIIIN	WAA	UNII	
	t _w Pulse duration	PRE or CLR low	8		9		20	
L _W		CLK	8		9		ns	
	Setup time before CLK↑	Data	8		9			
i _{su} Setup	Setup time before CEK	PRE or CLR inactive	7		7		ns	
t _h	Hold time, data after CLK↑		0.5		0.5		ns	

Timing Requirements

over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

	PARAMET	T _A = 2	T _A = 25°C		MAY	UNIT		
	PARAMEI	EK	MIN	MAX	MIN	MAX	UNIT	
	t., Pulse duration	PRE or CLR low	6		7			
'W	Pulse duration	CLK	6		7		ns	
	Setup time hefere CLK [↑]	Data	6		7		ns	
l _{su} Setup tin	Setup time before CLK↑	PRE or CLR inactive	5		5			
t _h	Hold time, data after CLK↑		1.45		2.15		ns	

Timing Requirements

over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

	~~						
DAE	AMETER	T _A = 2	T _A = 25°C		MAY	UNIT	
FAR	KAMETER	MIN	MAX	IVIIIV	WAX	UNIT	
t _w Pulse duration	PRE or CLR low	5		5			
	CLK	5		5		ns	
t _{su} Setup time before CLK↑	Data	5		5			
	PRE or CLR inactive	3		3	ns		
Hold time, data after CLK↑		1.45		2.15		ns	
	Pulse duration Setup time before CLK↑	Pulse duration CLK Data PRE or CLR inactive	PARAMETER MIN Pulse duration PRE or CLR low 5 CLK 5 Setup time before CLK↑ Data 5 PRE or CLR inactive 3	PARAMETER MIN MAX Pulse duration PRE or CLR low 5 CLK 5 Setup time before CLK↑ Data 5 PRE or CLR inactive 3	PARAMETER MIN MAX Pulse duration PRE or CLR low 5 5 CLK 5 5 Setup time before CLK↑ Data 5 5 PRE or CLR inactive 3 3	PARAMETER MIN MAX MIN MAX Pulse duration PRE or CLR low 5 5 5 CLK 5 5 5 Setup time before CLK↑ Data 5 5 PRE or CLR inactive 3 3	

Switching Characteristics

over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO LOAD		T _A = 25°C			MIN MAX		UNIT
PARAMETER		(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	IVIIIN	IVIAA	ONII
f _{max}			$C_L = 50 pF$	30	70		25		MHz
+	PRE or CLR	Q or Q	0 50 -5		13	17.4	1	20	no
^L pd	CLK	QUIQ	$C_L = 50 \text{ pF}$		14.2	20	1	23	ns

Switching Characteristics

over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	LOAD	T,	T _A = 25°C		MIN	MAX	UNIT
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	IVIIIN	IVIAA	CINII
f _{max}			C _L = 50 pF	50	90		45		MHz
	PRE or CLR	Q or Q	C 50 °F		9.2	15.8	1	18	
ι _{pd}	CLK	QOIQ	$C_L = 50 \text{ pF}$		10.2	15.4	1	18	ns

Switching Characteristics

over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

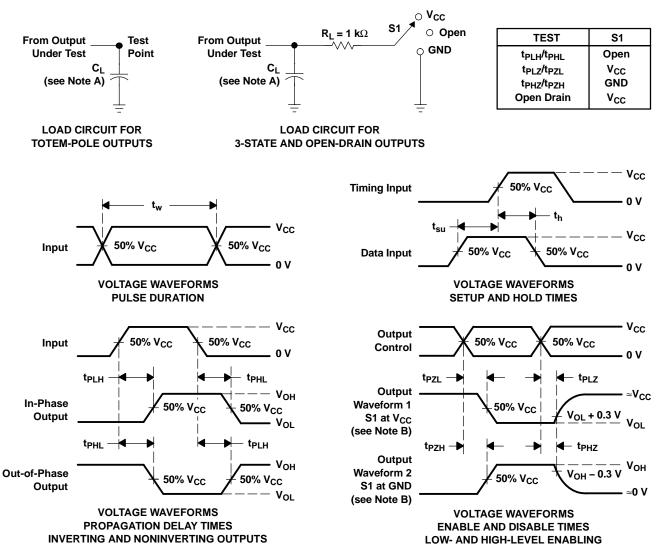
PARAMETER	FROM TO	то	O LOAD	T _A = 25°C			MIN MAX		UNIT
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	AX	UNII	
f _{max}			C _L = 50 pF	90	140		75		MHz
4	PRE or CLR	Q or Q	C _ 50 pF		6.6	9.7	1	12	20
l _{pd}	CLK	QUIQ	$C_L = 50 pF$		7.2	9.9	1	13	ns

Noise Characteristics⁽¹⁾

 $V_{CC} = 3.3 \text{ V}, C_{L} = 50 \text{ pF}, T_{A} = 25^{\circ}\text{C}$

	PARAMETER	MIN	TYP	MAX	UNIT
V _{OL(P)}	Quiet output, maximum dynamic V _{OL}		0.1	0.8	V
V _{OL(V)}	Quiet output, minimum dynamic V _{OL}		0	-0.8	V
V _{OH(V)}	Quiet output, minimum dynamic V _{OH}		3.2		V
V _{IH(D)}	High-level dynamic input voltage	2.31			V
$V_{IL(D)}$	Low-level dynamic input voltage			0.99	V

⁽¹⁾ Characteristics are for surface-mount packages only.


Operating Characteristics

 $T_A = 25^{\circ}C$

	PARAMETER	TEST CO	V _{CC}	TYP	UNIT	
_	Dower dissination conscitance	C	f 10 MH=	3.3 V	21	۲
C_{pd}	Power dissipation capacitance	$C_L = 50 \text{ pF},$	f = 10 MHz	5 V	23	pΕ

SCLS696-JANUARY 2006

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \Omega$, $t_r \leq$ 3 ns, $t_f \leq$ 3 ns.
- D. The outputs are measured one at a time, with one input transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis}.
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PHL} and t_{PLH} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuits and Voltage Waveforms

PACKA

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Pea
SN74LV74AMPWREP	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-2600
V62/06605-01XE	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-2600

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new **PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retard in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate in continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical at TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release

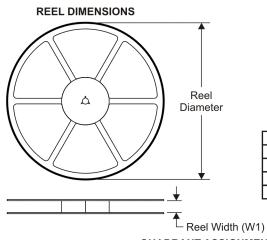
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Cu

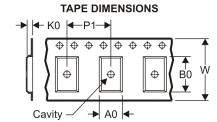
OTHER QUALIFIED VERSIONS OF SN74LV74A-EP:

Catalog: SN74LV74A

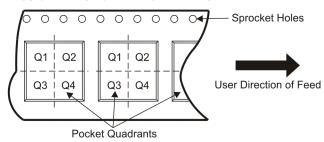
Automotive: SN74LV74A-Q1

PACKA

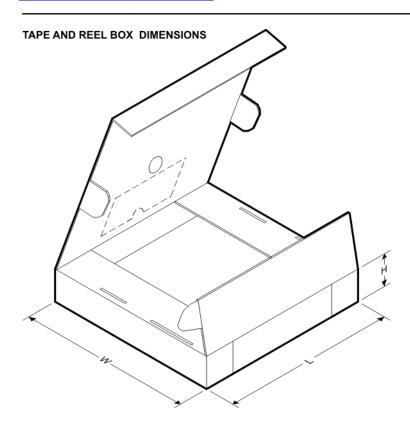

NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects

30-Jul-2010


TAPE AND REEL INFORMATION

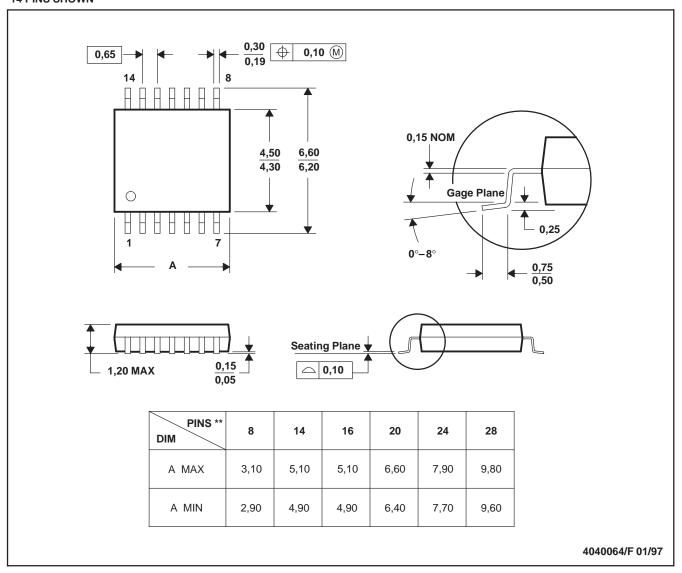
A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LV74AMPWREP	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

30-Jul-2010


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LV74AMPWREP	TSSOP	PW	14	2000	346.0	346.0	29.0

PW (R-PDSO-G**)

14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DLP® Products	www.dlp.com	Communications and Telecom	www.ti.com/communications
DSP	<u>dsp.ti.com</u>	Computers and Peripherals	www.ti.com/computers
Clocks and Timers	www.ti.com/clocks	Consumer Electronics	www.ti.com/consumer-apps
Interface	interface.ti.com	Energy	www.ti.com/energy
Logic	logic.ti.com	Industrial	www.ti.com/industrial
Power Mgmt	power.ti.com	Medical	www.ti.com/medical
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Space, Avionics & Defense	www.ti.com/space-avionics-defense
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video and Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless-apps