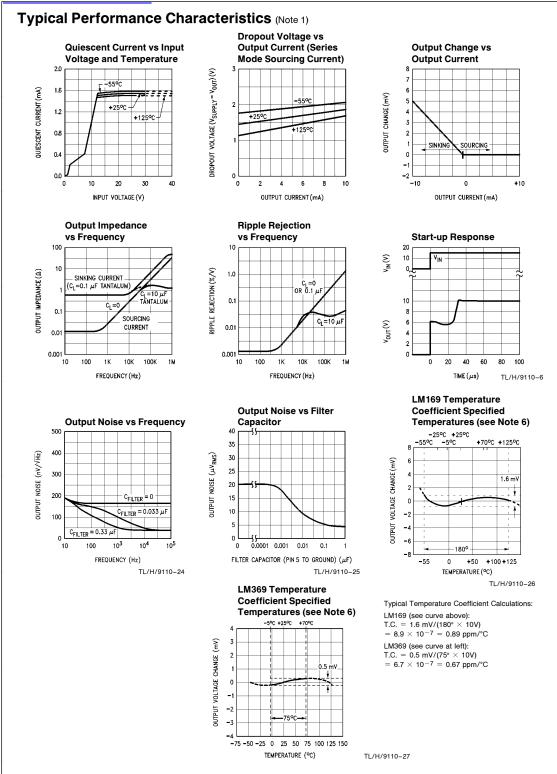


© 1995 National Semiconductor Corporation TL/H/9110 RRD-B30M115/Printed in U. S. A.

.M169/LM369 Precision Voltage Reference

Absolute Maximum Ra	atings (Note 8)		
If Military/Aerospace specified of please contact the National S Office/Distributors for availability	Semiconductor Sales	Soldering Information DIP (N) or Plastic (RC) Package, 10 sec. H08 (H) Package, 10 sec.	+ 260°C + 300°C
Input Voltage (Series Mode)	35V	SO (M) Package, Vapor Phase (60 sec.)	+215°C
Reverse Current (Shunt Mode)	50 mA	Infrared (15 sec.) See AN-450 "Surface Mounting Methods and	+ 220°C
Power Dissipation (Note 7)	600 mW	on Product Reliability" (Appendix D) for other	
Storage Temperature Range	-60°C to +150°C	soldering surface mount devices.	
Operating Temperature Range LM169H, LM169H/883 LM369	(T _j min to T _j max) −55°C to +125°C 0°C to +70°C	ESD Tolerance $C_{zap} = 100 \text{ pF}, R_{zap} = 1.5 \text{k}$	800V


Electrical Characteristics, LM169, LM369 (Note 1)

Parameter	Conditions	Typical	Tested Limits (Notes 2, 13)	Design Limit (Note 3)	Units (Max Unless Noted)
V _{out} Nominal		+ 10.000			v
V _{out} Error	(Note 11)	50 0.50	±500 ±5		ppm mV
V _{out} Tempco LM169B, LM369B LM169, LM369 LM369C (Note 6) (Note 11)	$\begin{array}{l} T_{min} < T_{j} < T_{max} \\ T_{min} < T_{j} < T_{max} \\ T_{min} < T_{j} < T_{max} \end{array}$	1.0 2.7 6	3.0 5.0 10		ppm/°C ppm/°C ppm/°C
Line Regulation	$13V \leq V_{IN} \leq 30V$	2.0	4.0	8.0	ppm/V
Load Regulation Sourcing Sinking (Note 12) (Note 4, Note 9)	0 to 10 mA 0 to −10 mA	+ 3 + 80	±8.0 +150	20.0	ppm/mA ppm/mA
Thermal Regulation Sourcing Sinking (Note 12) (Note 5)	(t = 10 msec After Load is Applied)	3.0 3.0	±20 —		ppm/100 mW ppm/100 mW
Supply Current		1.4	1.8	2.0	mA
∆Supply Current	$13V \leq V_{IN} \leq 30V$	0.06	0.12	0.2	mA
Short Circuit Current		27	15 50	11 65	mA min mA max
Noise Voltage	$\begin{array}{l} 10 \; \text{Hz to 1 kHz} \\ 0.1 \; \text{Hz to 10 Hz} \\ (10 \; \text{Hz to 10 kHz}, \\ C_{\text{filter}} = 0.1 \; \mu\text{F}) \end{array}$	10 4 4	30 — —	 	μV rms μV p-p μV rms
Long-term Stability (Non-Cumulative) (Note 10)	1000 hours, $T_j < T_{max}$ (Measured at + 25°C)	6	_	_	ppm
Temperature Hysteresis of V _{out}	$\Delta T = 25^{\circ}C$	3	_	—	ppm
Output Shift per 1 μ A at Pin 5		1500	2600	_	ppm

查询"<u>LM169H"供应商</u>

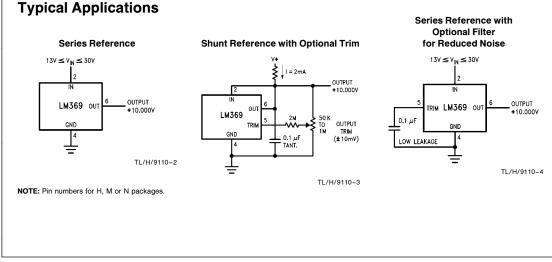
Parameter	Conditions	Typical	Tested Limits (Notes 2, 13)	Design Limit (Note 3)	Units (Max Unless Noted)
V _{out} Nominal		+ 10.000			V
V _{out} Error, LM369D		70 0.7	± 1000 ± 10.0	—	ppm mV
V _{out} Tempco (Note 6)	$T_{min} \leq T_j \leq T_{max}$	5		30	ppm/°C
Line Regulation	$13V \leq V_{IN} \leq 30V$	2.4	±6.0	12	ppm/V
Load Regulation Sourcing Sinking (Note 12) (Note 4, Note 9)	0 to 10 mA 0 to 10 mA	+ 3 + 80	±12 +160	± 25	ppm/mA ppm/mA
Thermal Regulation Sourcing Sinking (Note 12) (Note 5)	(t = 10 msec After Load is Applied)	4.0 4.0	±25 —		ppm/100 mW ppm/100 mW
Supply Current		1.5	2.0	2.4	mA
∆Supply Current	$13V \leq V_{IN} \leq 30V$	0.06	0.16	0.3	mA
Short Circuit Current		27	14 50	10 65	mA min mA max
Noise Voltage	10 Hz to 1 kHz 0.1 Hz to 10 Hz (10 Hz to 10 kHz, $C_{filter} = 0.1 \mu$ F)	10 4 4	30 — —	 	μV rms μV p-p μV rms
Long-Term Stability (Non-Cumulative)	1000 Hours, $T_j < T_{max}$ (Measured at + 25°C)	8	_	_	ppm
Temperature Hysteresis of V _{out}	$\Delta T = 25^{\circ}C$	5	_	_	ppm
Output Shift Per 1 μA at Pin 5		1500	2800	_	ppm
YPE apply over the rated op lote 2: Tested limits are guar lote 3: Design Limits are guar o calculate outgoing quality le lote 4: The LM169 has a Clas A. In some applications it m lote 5: Thermal regulation is lote 6: Temperature Coeffici emperature Range (see grap lote 7: In metal can (H), θ _{J-C} lote 8: Absolute Maximum Ra e Rated Operating Condition lote 9: Regulation is measure nder the specifications for The regulations of the specifications of The regulations of the specifications of The regulations of the specifications for The regulations of the specifications of the specifications for The regulations of the specifications of the specificati	anteed and 100% tested in produ- ranteed (but not 100% production wels. ss B output, and will exhibit transie ay be advantageous to pre-load the defined as the change in the outpre- ent of V_{OUT} is defined as the works). There is no guarantee that the is 75°C/W and θ_{J-A} is 150°C/W. titings indicate limits beyond which	action. tested) over the indicat ints at the crossover po- ne output to either V _{in} of out voltage at a time T prst-case ΔV_{out} measure Specified Temperatu- In plastic DIP, θ_{J-A} is 1 damage to the device pulse testing with a low oad Regulation is measure	ed temperature and supply of int. This point occurs when t or to ground, to avoid this or after a step change of powe red at Specified Temperatur res are exactly at the minim 60° C/W. In S0-8, θ_{J-A} is 18 may occur. DC and AC elect duty cycle. Changes in outpured at a point on the outpured at a point on the outpured at a point on the outpured at a point on the outpured.	voltage ranges. These he device is required rossover point. er dissipation of 100 n res divided by the tot num or maximum devi 30° C/W, in TO-226, θ trical specifications ar put voltage due to he	 Iimits are not to be use to sink approximately 1 nW. tal span of the Specification. J-A is 160°C/W. e not guaranteed beyon ating effects are cover

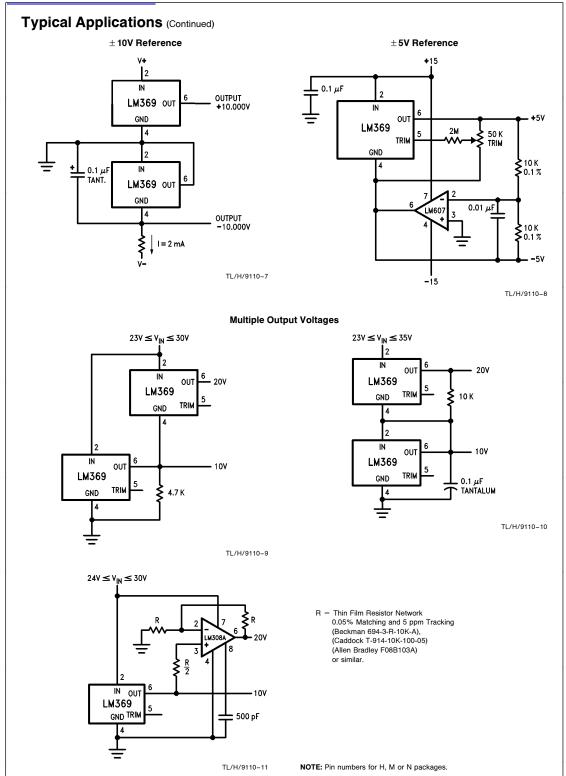
Note 13: A military RETS electrical test specification is available on request.

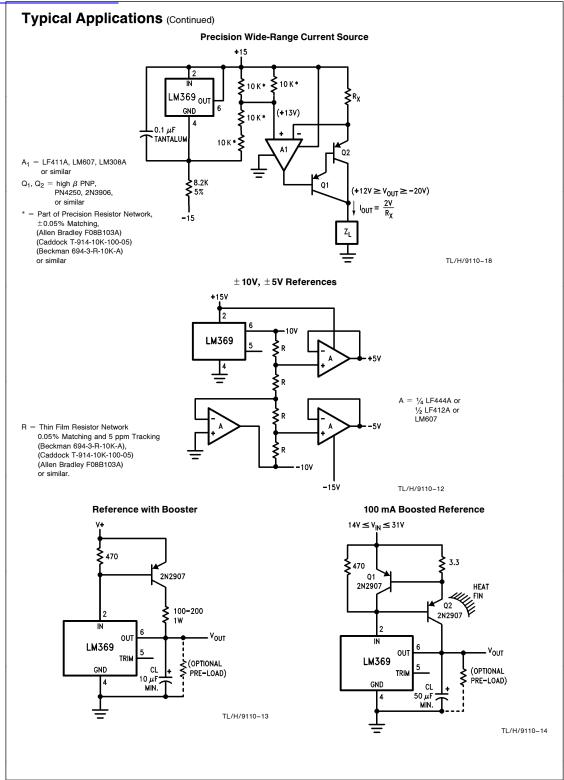
Application Hints

The LM169/LM369 can be applied in the same way as any other voltage reference. The adjacent Typical Applications Circuits suggest various uses for the LM169/LM369. The LM169 is recommended for applications where the highest stability and lowest noise is required over the full military temperature range. The LM369 is suitable for limited-temperature operation. The curves showing the Noise vs. Capacitance in the Typical Performance Characteristics section show graphically that a modest capacitance of 0.1 to 0.3 microfarads can cut the broadband noise down to a level of only a few microvolts, less than 1 ppm of the output voltage. The capacitor used should be a low-leakage type. For the temperature range 0 to 50°C, polyester or Mylar® will be suitable, but at higher temperatures, a premium film capacitor such as polypropylene is recommended. For operation at +125°C, a Teflon® capacitor would be required, to ensure sufficiently low leakage. Ceramic capacitors may seem to do the job, but are not recommended for production use, as the high-K ceramics cannot be guaranteed for low leakage, and may exhibit piezo-electric effects, converting vibration or mechanical stress into excessive electrical noise.

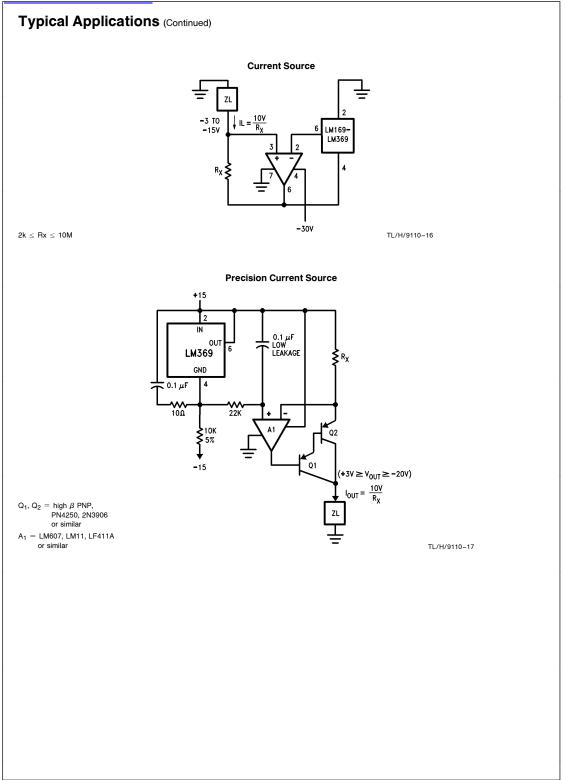
Additionally, the inherent superiority of the LM169/369's buried Zener diode provides freedom from low-frequency noise, wobble, and jitter, in the frequency range 0.01 to 10 Hertz, where capacitive filtering is not feasible.

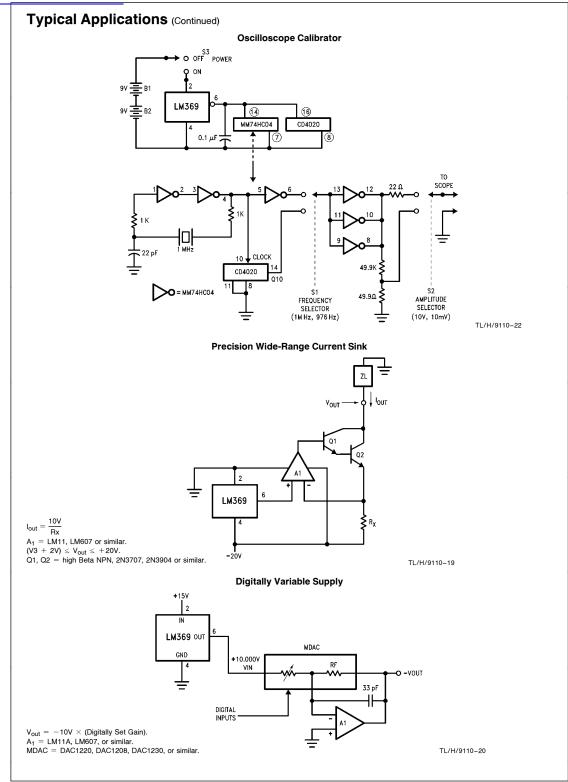

Pins 1, 3, 7, and 8 of the LM169/369 are connected to internal trim circuits which are used to trim the device's output voltage and Tempco during final testing at the factory. Do not connect anything to these pins, or improper operation may result. These pins would not be damaged by a short to ground, or by Electrostatic Discharges; however, keep them away from large transients or AC signals, as stray capacitance could couple noises into the output. These pins may be cut off if desired. Alternatively, a shield foil can be laid out on the printed circuit board, surrounding these pins and pin 5, and this guard foil can be connected to coupling and DC leakages.

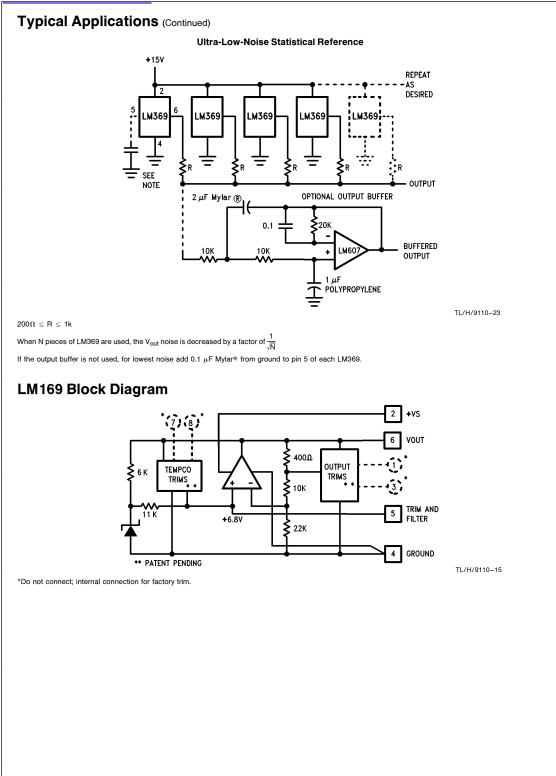

The trim pin (pin 5) should also be guarded away from noise signals and leakages, as it has a sensitivity of 15 millivolts of ΔV_{out} per microampere. The trim pin can also be used in

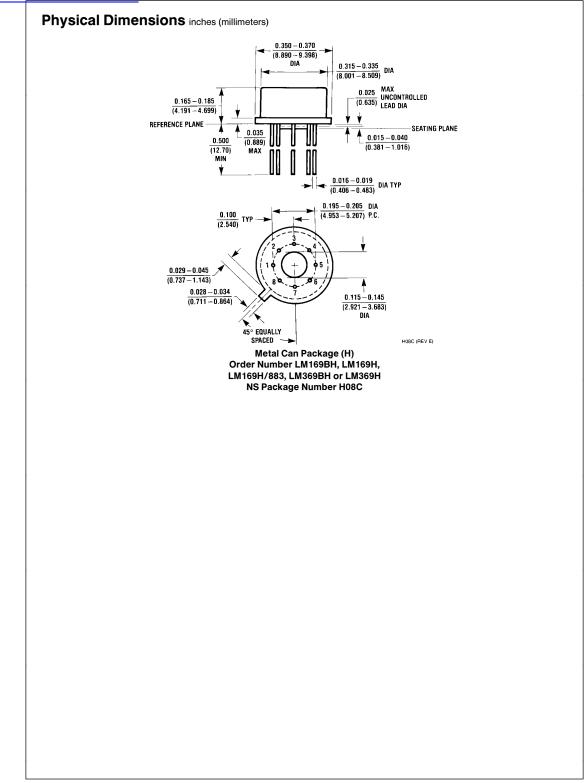

the circuits shown, to provide an output trim range of ± 10 millivolts. Trimming to a wider range is possible, but is not recommended as it may degrade the Tempco and the Tempco linearity at temperature extremes. For example, if the output were trimmed up to 10.240V, the Tempco would be degraded by 8 ppm/°C. As a general rule, Tempco will be degraded by 1 ppm/°C per 30 mV of output adjustment. The output can sink current as well as source it, but the output impedance is much better for sourcing current. Also, the LM169/369 requires a 0.1 µF tantalum capacitor (or, 0.1 μ F in series with 10 Ω) bypass from the output to ground, for stable operation in shunt mode (output sinking current). The output has a class-B stage, so if the load current changes from sourcing to sinking, an output transient will occur. To avoid this transient, it may be advisable to preload the output with a few milliamperes of load to ground. The LM169/369 does have an excellent tolerance of load capacitance, and in cases of load transients, electrolytic or tantalum capacitors in the range 1 to 500 microfarads have been shown to improve the output impedance without degrading the dynamic stability of the device. The LM169/369 are rated to drive an output of ± 10 mA, but for best accuracy, any load current larger than 1 mA can cause thermal errors (such as, 1 mA \times 5V \times 4 ppm/100 mW = 0.2 ppm or 2 microvolts) and degrade the ultimate precision of the output voltage.

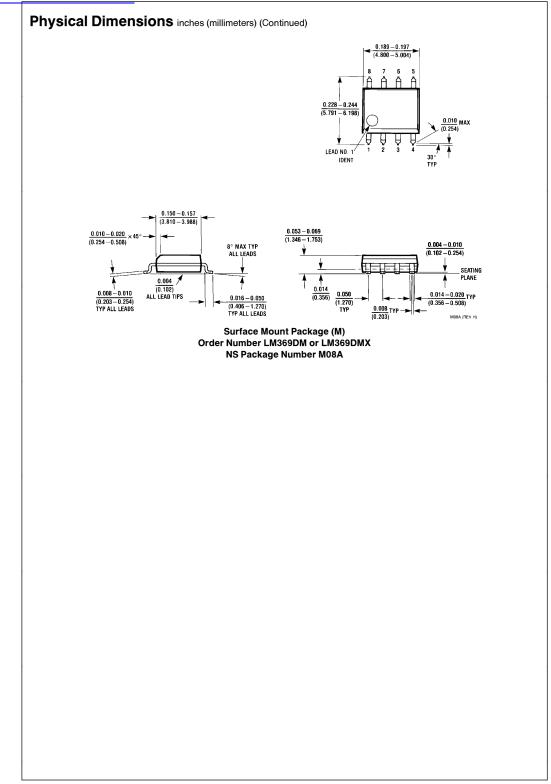
The output is short-circuit-proof to ground. However, avoid overloads at high ambient temperatures, as a prolonged short-circuit may cause the junction temperature to exceed the Absolute Maximum Temperature. The device does not include a thermal shut-down circuit. If the output is pulled to a positive voltage such as +15 or +20V, the output current will be limited, but overheating may occur. Avoid such overloads for voltages higher than +20 V, for more than 5 seconds, or, at high ambient temperatures.

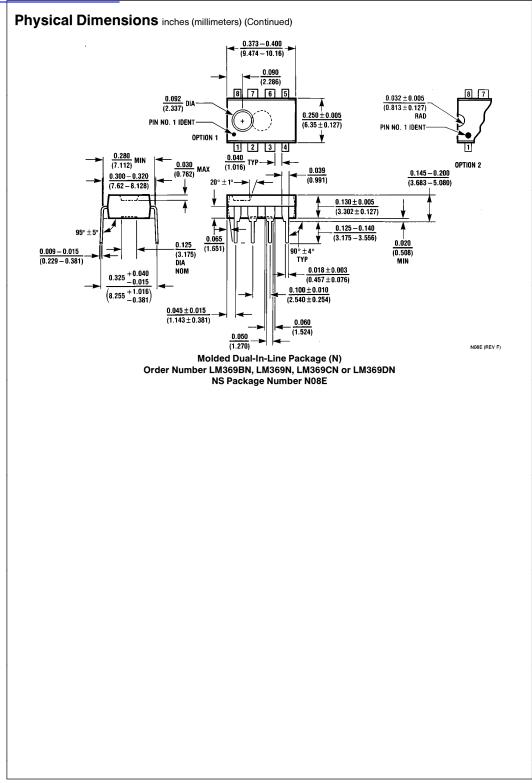

The LM169/369 has an excellent long-term stability, and is suitable for use in high-resolution Digital Voltmeters or Data Acquisition systems. Its long-term stability is typically 3 to 10 ppm per 1000 hours when held near T_{max} , and slightly better when operated at room temperature. Contact the factory for availability of devices with proven long-term stability.

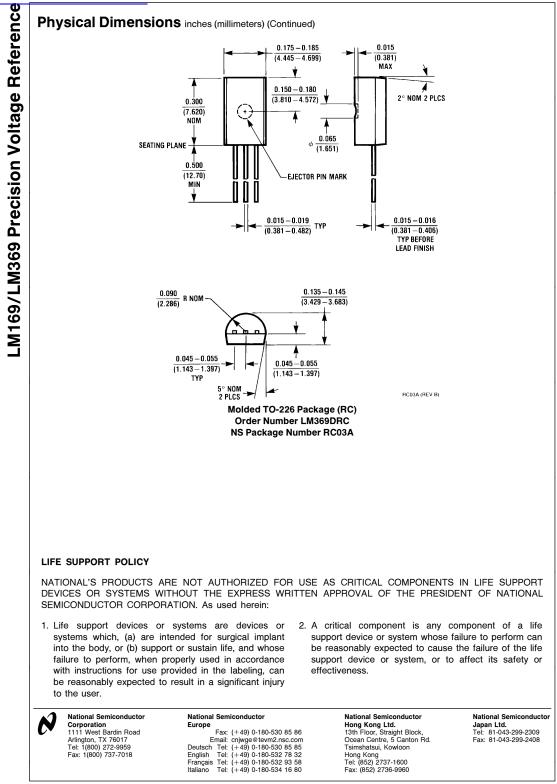





7






查询"<u>LM169H"供应商</u>

查询"<u>LM169H"供应商</u>

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications