SF161CT THRU SF168CT

GLASS PASSIVATED SUPER FAST RECTIFIER Reverse Voltage – 50 to 800 V Forward Current – 16 A

Features

- Low forward voltage drop
- Low reverse leakage current
- Superfast switching time for high efficiency
- High current capability
- High surge current capability

Mechanical Data

- Case: Molded plastic, TO-220
- Epoxy: UL 94V-0 rate flame retardant
- Terminals: leads solderable per MIL-STD-202 method 208 guaranteed
- Polarity: As marked
- Mounting Position: Any

TO-220 187 (4.7) .148 (3.8) 153 (3.9) 413 (10.5) 146 (3.7 .374 (9.5) (2.75) .053 (1.3) ١ .047 (1.2) 270 (6.9) 230 (5.8) .610 (15.5 .583 (14.8 (4.0).583 (14.8) .531 (13.5) (1.3)043 (1.1 .035 (0.9 .022 (0.56) .102 (2.6) .014 (0.36) .091 (2.3) .126 (3.2) PIN 1 O-PIN 3 O-

Dimensions in inches and (millimeters)

Absolute Maximum Ratings and Characteristics

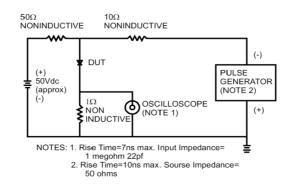
Ratings at 25 °C ambient temperature unless otherwise specified. Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

Parameter	Symbols	SF161CT	SF162CT	SF163CT	SF164CT	SF165CT	SF166CT	SF167CT	SF168CT	Units
Maximum Recurrent Peak Reverse Voltage	V _{RRM}	50	100	150	200	300	400	500	600	V
Maximum RMS Voltage	V _{RMS}	35	70	105	140	210	280	350	420	V
Maximum DC Blocking Voltage	V _{DC}	50	100	150	200	300	400	500	600	V
Maximum Average Forward Rectified Current at $T_{\rm C}$ = 100 °C	I _(AV)	16 JUN 0250-								A
Peak Forward Surge Current, 8.3 mS Single half Sine-wave Superimposed on Rated Load (JEDEC method)	IFSM	125								A
Maximum Forward Voltage at 8 A and 25 °C	V _F	0.95 1.3 1.7					.7	V		
Maximum Reverse Current at Rated DC Blocking Voltageat $T_A = 25 ^{\circ}C$ T_A = 100 ^{\circ}C	I _R	10 500								μA
Typical Junction Capacitance ¹⁾	CJ	80 60						244	pF	
Maximum Reverse Recovery Time 2)	trr	35 50 50						C.C0	ns	
Typical Thermal Resistance ³⁾	$R_{\theta JC}$	2.5								°C/W
Operating and Storage Temperature Range	T_J, T_s	-55 to +150								°C

¹⁾ Measured at 1 MHz and applied reverse voltage of 4 VDC.

²⁾ Reverse recovery test conditions: $I_F = 0.5 A$, $I_R = 1 A$, $I_{RR} = 0.25 A$

³⁾ Thermal resistance from Junction to case per leg mounted on heatsink.



SEMTECH ELECTRONICS LTD.

(Subsidiary of Semtech International Holdings Limited, a company listed on the Hong Kong Stock Exchange, Stock Code: 724)

FIG.1- REVERSE RECOVERY TIME CHARACTERISTIC AND TEST CIRCUIT DIAGRAM

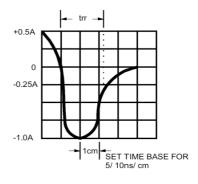
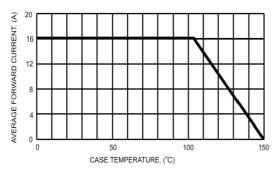



FIG.2- MAXIMUM FORWARD CURRENT DERATING CURVE

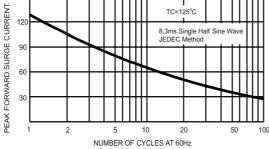
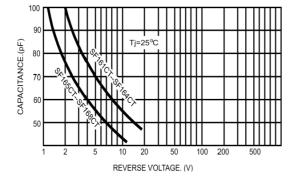



FIG.5- TYPICAL JUNCTION CAPACITANCE PER LEG

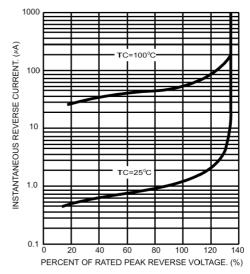
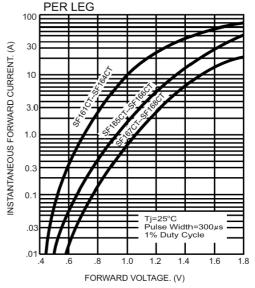



FIG.6- TYPICAL FORWARD CHARACTERISTICS

SEMTECH ELECTRONICS LTD. (Subsidiary of Semtech International Holdings Limited, a company

(Subsidiary of Semtech International Holdings Limited, a company listed on the Hong Kong Stock Exchange, Stock Code: 724)

