www.ti.com

SLLS977A - APRIL 2009 - REVISED JULY 2010

DisplayPort to TMDS Translator

Check for Samples: SN75DP139

FEATURES

- DisplayPort Physical Layer Input Port to TMDS Physical Layer Output Port
- Integrated TMDS level translator with Receiver Equalization
- Supports Data Rates up to 2.5Gbps
- Achieves HDMI 1.4a compliance and 3D support with TMDS clock rates up to 250MHz
- Integrated I²C Logic Block for DVI/HDMI Connector Recognition
- Integrated Active I²C Buffer
- Enhanced ESD: 10KV on all pins

- Enhanced Commercial Temperature Range: 0°C to 85°C
- 48 Pin 7 x 7 QFN Package

APPLICATIONS

- Personal Computer Market
 - DP/TMDS Dongle
 - Desktop PC
 - Notebook PC
 - Docking Station
 - Standalone Video Card

DESCRIPTION

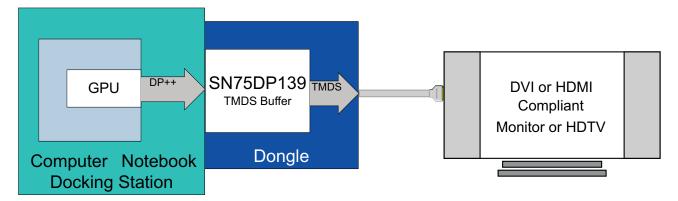
The SN75DP139 is a Dual-Mode DisplayPort input to Transition-Minimized Differential Signaling (TMDS) output. The TMDS output has a built in level translator supporting Digital Video Interface (DVI) 1.0 and High Definition Multimedia Interface (HDMI) 1.3 standards. The SN75DP139 is specified up to a maximum data rate of 2.5Gbps, supporting resolutions greater then 1920x1200 or HDTV 12 bit color depth at 1080p (progressive scan). SN75DP139 is compliant with the HDMI 1.4a specifications and supports optional protocol enhancements such as 3D graphics at resolutions demanding a pixel rate up to 250MHz.

An integrated Active I²C buffer isolates the capacitive loading of the source system from that of the sink and interconnecting cable. This isolation improves overall signal integrity of the system and allows for considerable design margin within the source system for DVI / HDMI compliance testing.

A logic block was designed into the SN75DP139 in order to assist with TMDS connector identification. Through the use of the I²C_EN pin, this logic block can be enabled to indicate the translated port is an HDMI port; therefore legally supporting HDMI content.

df.dzsc.com

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

TYPICAL APPLICATION

GPU - Graphics Processing Unit DP++ - Dual-Mode DisplayPort

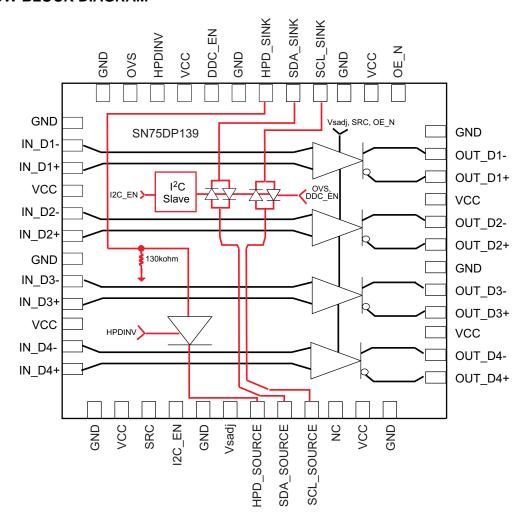
TMDS - Transition-Minimized Differential Signaling

DVI - Digital Visual Interface

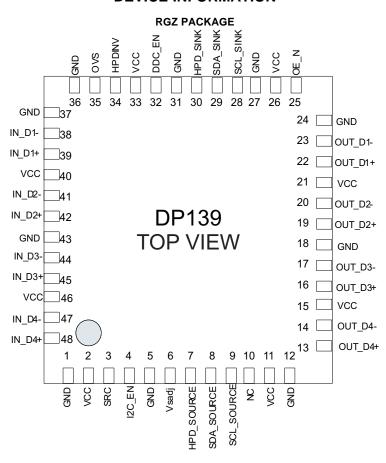
HDMI - High Definition Multimedia Interface

GPU	Graphics Processing Unit
DP++	Dual-Mode DisplayPort

TMDS Transition-Minimized Differential Signaling


DVI Digital Visual Interface

HDMI High Definition Multimedia Interface


₩營销%N75DP139"供应商

DATA FLOW BLOCK DIAGRAM

DEVICE INFORMATION

SLLS977A - APRIL 2009 - REVISED JULY 2010

<u>₩豐铈♥N75DP139"供应商</u>

PIN FUNCTIONS

Р	IN	I/O	DESCRIPTION				
SIGNAL	NO.						
	1		MAIN LINK INPUT PINS				
IN_D1	38, 39	I	DisplayPort Main Link Channel 0 Differential Input				
IN_D2	41, 42	ı	DisplayPort Main Link Channel 1 Differential Input				
IN_D3	44, 45	I	DisplayPort Main Link Channel 2 Differential Input				
IN_D4	47, 48	ı	DisplayPort Main Link Channel 3 Differential Input				
	1	Į.	MAIN LINK PORT B OUTPUT PINS				
OUT_D1	23, 22	0	TMDS Data 2 Differential Output				
OUT_D2	20, 19	0	TMDS Data 1 Differential Output				
OUT_D3	17, 16	0	TMDS Data 0 Differential Output				
OUT_D4	14, 13	0	TMDS Data Clock Differential Output				
	HOT PLUG DETECT PINS						
HPD_SOURCE	7	0	Hot Plug Detect Output				
HPD_SINK	30	ı	Hot Plug Detect Input				
	•		AUXILIARY DATA PINS				
SDA_SOURCE, SCL_SOURCE	8, 9	I/O	Source Side Bidirectional DisplayPort Auxiliary Data Line				
SDA_SINK, SCL_SINK	29, 28	I/O	TMDS Port Bidirectional DDC Data Lines				
			CONTROL PINS				
OE_N	25	ı	Output Enable and power saving function for High Speed Differential level shifter path.				
NC	10		No Connect				
OVS	35	ı	DDC I2C buffer offset select				
DDC_EN	32	ı	Enables or Disables the DDC I2C buffer				
HPDINV	34	ı	HPD_SOURCE Logic and Level Select				
VSadj	6	ı	TMDS Compliant Voltage Swing Control				
SRC	3	ı	TMDS outputs rise and fall time select				
I2C_EN	4	ı	Internal I ² C register enable, used for HDMI / DVI connector differentiation				
			SUPPLY AND GROUND PINS				
VCC	2, 11, 15, 21, 26, 33, 40, 46		3.3V Supply				
GND	1, 5, 12, 18, 24, 27, 31, 36, 37, 43		Ground				

Input/Output Equivalent Circuits

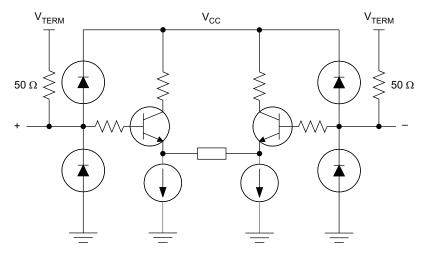


Figure 1. DisplayPort Input Stage

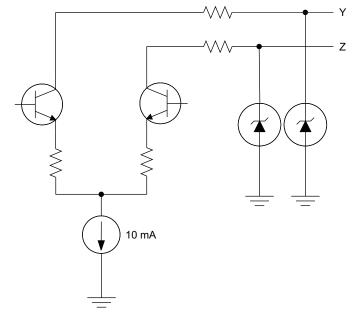


Figure 2. TMDS Output Stage

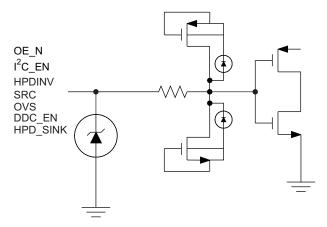


Figure 3. HPD and Control Input Stage

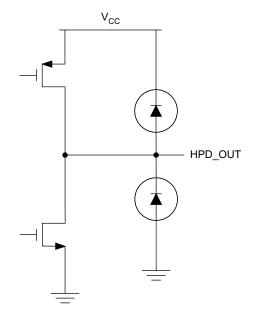


Figure 4. HPD Output Stage

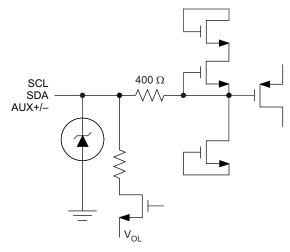


Figure 5. I²C Input and Output Stage

Table 1. Control Pin Lookup Table

SIGNAL	LEVEL ⁽¹⁾	STATE	DESCRIPTION
OE_N	Н	Power Saving Mode	Main Link is disabled. IN_Dx termination = 50 Ω with common mode voltage set to 0V. OUT_Dx outputs = high impedance
	L	Normal Mode	IN_Dx termination = 50 Ω OUT_Dx outputs = active
I ² C_EN	Н	HDMI	The Internal I2C register is active and readable when the TMDS port is selected indicating that the connector being used is HDMI. This mode selects the fastest rise and fall time for the TMDS differential output signals
	L	DVI	The Internal I2C register is disabled and not readable when the TMDS port is selected indicating that the connector being used is DVI. This mode selects a slower rise and fall time for the TMDS differential output signals See DVI Application Section.
VSadj	4.02 kΩ ±5%	Output Voltage Swing Contol	Driver output voltage swing precision control to aid with system compliance
HPDINV	Н	HPD Inversion	HPD_SOURCE VOH =0.9V (typical) and HPD logic is inverted
	L	HPD non-inversion	HPD_SOURCE VOH =3.2V (typical) and HPD logic is non-inverted
SRC	Н	Edge Rate: Slowest	SRC helps to slow down the rise and fall time. SRC =High adds ~60ps to the rise and fall time of the TMDS differential output signals in addition to the I2C_EN pin selection
	L	Edge Rate: Slow	SRC helps to slow down the rise and fall time. SRC =Low adds ~30ps to the rise and fall time of the TMDS differential output signals in addition to the I ² C_EN pin selection
	Hi-Z	Edge Rate	Leaving the SRC pin High Z, will keep the default rise and fall time of the TMDS differential output signals as selected by the $^{12}C_{-}EN$ pin. It is recommended that an external resistor-divider (less than 100 k Ω) is used so that voltage on this pin = VCC/2, if Hi-Z logic level is intended on this pin.
ovs	Н	Offset 1	DDC source side VOL and VIL offset range 1
	L	Offset 2	DDC source side VOL and VIL offset range 2
	Hi-Z	Offset 3	DDC source side VOL and VIL offset range 3 It is recommended that an external resistor-divider (less than 100 k Ω) is used so that voltage on this pin = VCC/2, if Hi-Z logic level is intended on this pin.
DDC_EN	Н	DDC Buffer enabled	DDC Buffer is enabled
	L	DDC buffer disabled	DDC Buffer is disabled

^{(1) (}H) Logic High; (L) Logic Low; (Z) High Z

SLLS977A - APRIL 2009 - REVISED JULY 2010

ORDERING INFORMATION(1)

PART NUMBER	PART MARKING	PACKAGE
SN75DP139RGZR	DP139	48-pin QFN Reel (large)
SN75DP139RGZT	DP139	48-pin QFN Reel (small)

⁽¹⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted) (1)

		VALUE	UNIT
Supply voltage range ⁽²⁾	VCC	-0.3 to 3.6	V
	Main Link Input (IN_Dx) differential voltage	1.56	V
Wain Link Input (IN_Dx) differential TMDS Outputs (OUT_Dx) HPD I/O (HPD_SOURCE, HPD_S Auxiliary I/O (SCL_SOURCE, SDA_SDA_SINK) Control I/O (OE_N, DDC_EN, SRC Human body model (3)	TMDS Outputs (OUT_Dx)	-0.3 to 4	V
Voltage range	VCC	V	
vollage range		-0.3 to 5.5	V
	Control I/O (OE_N, DDC_EN, SRC, OVS, HPDINV)	-0.3 to 5.5	V
	Human body model ⁽³⁾	±10000	V
Electrostatic discharge	Charged-device model ⁽⁴⁾	±1500	V
	Machine model (5)	±200	V
Continuous power dissipation	n .	See Dissipation Rating Table	

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATINGS

PACKAGE	PCB JEDEC STANDARD	T _A ≤ 25°C	DERATING FACTOR ⁽¹⁾ ABOVE $T_A = 25^{\circ}C$	T _A = 85°C POWER RATING
48-pin QFN (RGZ)	Low-K	1426.8 mW	14.28 mW/°C	570 mW
	High-K	3125 mW	31.25 mW/°C	1250 mW

(1) This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.

⁽²⁾ All voltage values, except differential voltages, are with respect to network ground terminal.

⁽³⁾ Tested in accordance with JEDEC Standard 22, Test Method A114-B

⁴⁾ Tested in accordance with JEDEC Standard 22, Test Method C101-A

⁽⁵⁾ Tested in accordance with JEDEC Standard 22, Test Method A115-A

THERMAL CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX ⁽¹⁾	UNIT
$R_{\theta JB}$	Junction-to-board thermal resistance			9		°C/W
$R_{\theta JC}$	Junction-to-case thermal resistance			22		°C/W
P _{D1}	Device power dissipation ⁽²⁾	HDMI Mode: OE_N = 0V, DDC_EN = 5V, V_{CC} = 3.6V, ML: VID_PP = 1200mV, 2.5Gbps TMDS pattern AUX: V_1 = 3.3V, 100 kHz PRBS HPD: HPD_SINK = 5V, I2C_EN = 5V, SRC = Hi-Z	27	70+146 ⁽²⁾	396+146 ⁽²⁾	mW
P _{D2}	Device power dissipation ⁽²⁾	DVI Mode: OE_N = 0V, DDC_EN = 5V, V _{CC} = 3.6V, ML: VID_PP = 1200mV, 2.5Gbps TMDS pattern AUX: V ₁ = 3.3V, 100 kHz PRBS HPD: HPD_SINK= 5V, I2C_EN = 0V, SRC = Hi-Z	21	14+146 ⁽²⁾	306+146 ⁽²⁾	mW
P _{SD1}	Device power dissipation under low power with HPDINV = LOW	OE_N = 5V, DDC_EN = 0V, HPDINV = 0V, HPD_SINK = 0V		18	54	μW
P _{SD2}	Device power dissipation under low power with HPDINV =HIGH	OE_N = 5V, DDC_EN = 0V, HPDINV = 5V		1.7	3	mW
P _{SD3}	Device power dissipation under low power with DDC enabled with HPDINV = HIGH	OE_N = 5V, DDC_EN = 5V, HPDINV = 5V		16.5	29	mW
P _{SD4}	Device power dissipation under low power with DDC enabled with HPDINV = LOW	OE_N = 5V, DDC_EN = 5V, HPDINV = 0V		15	26	mW

⁽¹⁾ The maximum rating is simulated under 3.6V V_{CC} unless otherwise noted.

RECOMMENDED OPERATING CONDITIONS

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
V _{CC}	Supply Voltage	3	3.3	3.6	V
T _A	Operating free-air temperature	0		85	°C
MAIN LINK DIF	FERENTIAL INPUT PINS				
V _{ID_PP}	Peak-to-peak AC input differential voltage	0.15		1.2	V
d _R	Data rate	0.25		2.5	Gbps
t _{rise fall time}	Input Signal Rise and Fall time (20%-80%)	75			ps
V _{PRE}	Pre-emphasis on the Input Signal at IN_Dx pins	0	0	0	db
TMDS DIFFERI	ENTIAL OUTPUT PINS	·			
AV _{CC}	TMDS output termination voltage	3	3.3	3.6	V
d _R	Data rate	0.25		2.5	Gbps
R _T	Termination resistance	45	50	55	Ω
R _{Vsadj}	TMDS output swing voltage bias resistor ⁽¹⁾	3.65	4.02		kΩ
AUXILIARY AN	ID I2C PINS	"			
VI	Input voltage	0		5.5	V
d _{R(I2C)}	I ² C data rate			100	kHz

⁽¹⁾ R_{Vsadj} resistor controls the SN75DP139 Driver output voltage swing and thus helps in meeting system compliance. It is recommended that R_{Vsadj} resistor should be above the MIN value as indicated in the RECOMMENDED OPERATING CONDITIONS table, however for NOM and MAX value, Figure 24 could be used as reference. It is important to note that system level losses, AV_{CC} and R_T variation affect R_{Vsadj} resistor selection. Worse case variation on system level losses, AV_{CC}, R_T could make R_{Vsadj} resistor value of 4.02 kΩ ±5% result in non-compliant TMDS output voltage swing. In such cases Figure 24 could be used as reference.

⁽²⁾ Power dissipation is the sum of the power consumption from the VCC pins, plus the 146 mW of power from the AVCC (HDMI/DVI Receiver Termination Supply).

<u>₩豐梅•\$N75DP139"供应商</u>

RECOMMENDED OPERATING CONDITIONS (continued)

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT
HPD_SINK, HPDII	NV, OE_N, DDC_EN, I2C_EN			
V _{IH}	High-level input voltage	2	5.5	V
V _{IL}	Low-level input voltage	0	0.8	V
SRC, OVS				
V _{IH_SRC_OVS}	High-level input voltage	3	5.5	V
V _{IL_SRC_OVS}	Low-level input voltage	0	0.5	V

DEVICE POWER

The SN75DP139 is designed to operate off of one supply voltage VCC.

The SN75DP139 offers features to enable or disable different functionality based on the status of the output enable (OE_N) and DDC Enable (DDC_EN) inputs.

- OE_N affects only the High Speed Differential channels (Main Link/TMDS link). OE_N has no influence on the HPD_SINK input, HPD_SOURCE output, or the DDC buffer.
- DDC_EN affects only the DDC channel. The DDC_EN should never change state during the I2C operation. Disabling DDC_EN during a
 bus operation will hang the bus, while enabling the DDC_EN during bus traffic will corrupt the I2C bus operation. DDC_EN should only
 be toggled while the bus is idle.
- TMDS output edge rate control has impact on the SN75DP139 Active power. See Figure 20. TMDS output edge rate can be controlled by SRC pin. Slower output Edge Rate Setting helps in reducing the Active power consumption.

HPD_SINK	HPDINV	OE_N	DDC_EN	IN_Dx	OUT_Dx	DDC	HPD_SOURCE	MODE
Input = H or L	L	L	L	50 Ω termination active	Enabled	High- impedance	Output = non inverted, follows HPD_SINK	Active
Input = H or L	L	L	Н	50 Ω termination active	Enabled	enabled	Output = non inverted, follows HPD_SINK	Active
Input = H or L	L	н	L	50 Ω termination active: Terminations connected to common Mode Voltage = 0V.	High- impedance	High- impedance	Output = non inverted, follows HPD_SINK	Low Power
Input = H or L	L	Н	Н	50 Ω termination active: Terminations connected to common Mode Voltage = 0V.	High- impedance	enabled	Output = non inverted, follows HPD_SINK	Low Power with DDC channel enabled
Input = H or L	Н	L	L	50 Ω termination active	Enabled	High- impedance	Output = inverted, follows HPD_SINK	Active
Input = H or L	Н	L	Н	50 Ω termination active	Enabled	enabled	Output = inverted, follows HPD_SINK	Active
Input = H or L	Н	Н	L	50 Ω termination active: Terminations connected to common Mode Voltage = 0V.	High- impedance	High- impedance	Output = inverted, follows HPD_SINK	Low Power
Input = H or L	Н	Н	Н	50 Ω termination active: Terminations connected to common Mode Voltage = 0V.	High- impedance	enabled	Output = inverted, follows HPD_SINK	Low Power with DDC channel enabled

Copyright © 2009–2010, Texas Instruments Incorporated

ELECTRICAL CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		TYP	MAX	UNIT
I _{CC1}	Supply current (HDMI Mode)	HDMI Mode: OE_N = 0V, DDC_EN = 5V, V _{CC} = 3.6V, ML: VID_PP = 1200mV, 2.5Gbps TMDS pattern AUX: V _I = 3.3V, 100 kHz PRBS HPD: HPD_SINK = 5V, I2C_EN = 5V, SRC = Hi-Z		82	110	mA
I _{CC2}	Supply Current (DVI Mode)	DVI Mode: OE_N = 0V, DDC_EN = 5V, V _{CC} = 3.6V, ML: VID_PP = 1200mV, 2.5Gbps TMDS pattern AUX: V _I = 3.3V, 100 kHz PRBS HPD: HPD_SINK= 5V, I2C_EN = 0V, SRC = Hi-Z		65	85	mA
I _{SD1}	Shutdown current with HPDINV = LOW	OE_N = 5V, DDC_EN = 0V, HPDINV = 0V, HPD_SINK = 0V		5.5	15	μА
I _{SD2}	Shutdown current with HPDINV = HIGH	OE_N = 5V, DDC_EN = 0V, HPDINV = 5V		0.5	0.8	mA
I _{SD3}	Shutdown current with DDC enabled with HPDINV = HIGH	OE_N = 5V, DDC_EN = 5V, HPDINV = 5V		5	8	mA
I _{SD4}	Shutdown current with DDC enabled with HPDINV = LOW	OE_N = 5V, DDC_EN = 5V, HPDINV = 0V		4.5	7.2	mA

Hot Plug Detect

The SN75DP139 has a built in level shifter for the HPD outputs. The output voltage level of the HPD pin is defined by the voltage level of the VCC pin. The HPD input or HPD_SINK side has 130kohm of pull down resistor integrated.

The logic of the HPD_SOURCE output always follows the logic state of the HPD_SINK input based on the HPDINV pin logic, regardless of whether the device is in Active or Low Power Mode

ELECTRICAL CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{OH3.3}	High-level output voltage	I_{OH} = -100 μ A, V_{CC} = 3.3 V ±10%, HPDINV = LOW	2.8		3.6	V
V _{OH1.1}	High-level output voltage	I_{OH} = -100 μ A, V_{CC} = 3.3 V ±10%, HPDINV = HIGH	0.8		1.1	V
V_{OL}	Low-level output voltage	I _{OH} = 100 μA	0		0.1	V
I _{IH}	High-level input current	$V_{IH} = 2.0 \text{ V}, V_{CC} = 3.6 \text{ V}$	-30		30	μА
I _{IL}	Low-level input current	$V_{IL} = 0.8 \text{ V}, V_{CC} = 3.6 \text{ V}$	-30		30	μΑ
R _{INTHPD}	Input pull down on HPD_SINK (HPD Input)		110	130	160	kΩ

SWITCHING CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
t _{PD(HPD)}	Propagation delay	V _{CC} = 3.6 V	2	30	ns

<u>₩豐梅•\$N75DP139"供应商</u>

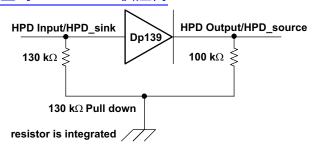


Figure 6. HPD Test Circuit (HPDINV = LOW)

Figure 8. HPD Timing Diagram (HPDINV = LOW)

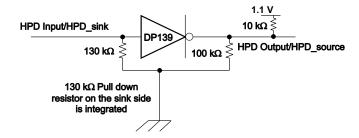


Figure 7. HPD Test Circuit (VOH =1.1), HPDINV=HIGH

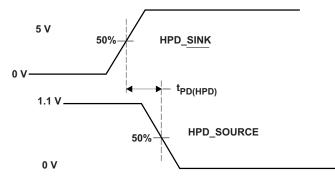


Figure 9. HPD Timing Diagram (HPDINV = HIGH)

AUX / I²C pins

The SN75DP139 utilizes an active I²C repeater. The repeater is designed to isolate the parasitic effects of the system in order to aid with system level compliance.

In addition to the I²C repeater, the SN75DP139 also supports the connector detection I²C register. This register is enabled via the I²C_EN pin. When active an internal memory register is readable via the AUX_I²C I/O. The functionality of this register block is described in the APPLICATION INFORMATION section.

ELECTRICAL CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
lL	Low input current		V _{CC} = 3.6 V, V _I = 0 V	-10		10	μΑ
likg(AUX)	Input leakage current	AUX_I ² C pins (SCL_SOURCE, SDA_SOURCE)	V _{CC} = 3.6V, V _I = 3.6 V	-10		10	μА
C _{IO(AUX)}	Input/Output capacitance	AUX_I ² C pins (SCL_SOURCE, SDA_SOURCE)	DC bias = 1.65 V, AC = 2.1Vp-p, f = 100 kHz			15	pF
V _{IH(AUX)}	High-level input voltage	AUX_I ² C pins (SCL_SOURCE, SDA_SOURCE)		1.6		5.5	V
V _{IL1(AUX)}	Low-level input voltage	AUX_I ² C pins (SCL_SOURCE, SDA_SOURCE)	OVS = HIGH	-0.2		0.36	V
V _{OL1(AUX)}	Low-level output voltage	AUX_I ² C pins (SCL_SOURCE, SDA_SOURCE)	I _O = 3 mA, OVS = HIGH	0.6		0.7	V
V _{IL2(AUX)}	Low-level input voltage	AUX_I ² C pins (SCL_SOURCE, SDA_SOURCE)	OVS = Hi-Z	-0.2		0.36	V
V _{OL2(AUX)}	Low-level output voltage	AUX_I ² C pins (SCL_SOURCE, SDA_SOURCE)	I _O = 3 mA, OVS = Hi-Z	0.5		0.6	V
V _{IL3(AUX)}	Low-level input voltage	AUX_I ² C pins (SCL_SOURCE, SDA_SOURCE)	OVS = Low	-0.2		0.27	V
V _{OL3(AUX)}	Low-level output voltage	AUX_I ² C pins (SCL_SOURCE, SDA_SOURCE)	I _O = 3 mA, OVS = Low	0.4		0.5	V
lkg(I2C)	Input leakage current	I ² C SDA/SCL pins (SCL_SINK, SDA_SINK)	V _{CC} = 3.6 V, V _I = 4.95 V	-10		10	μА
C _{IO(I2C)}	Input/Output capacitance	I ² C SDA/SCL pins (SCL_SINK, SDA_SINK)	DC bias = 2.5 V, AC = 3.5Vp-p, f = 100 kHz			15	pF
V _{IH(I2C)}	High-level input voltage	I ² C SDA/SCL pins (SCL_SINK, SDA_SINK)		2.1		5.5	V
V _{IL(I2C)}	Low-level input voltage	I ² C SDA/SCL pins (SCL_SINK, SDA_SINK)		-0.2		1.5	V
V _{OL(I2C)}	Low-level output voltage	I ² C SDA/SCL pins (SCL_SINK, SDA_SINK)	I _O = 3mA			0.2	V

<u>₩豐街%N75DP139"供应商</u>

SWITCHING CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH1}	Propagation delay time, low to high	Source to Sink	204		600	ns
t _{PHL1}	Propagation delay time, high to low	Source to Sink	35		200	ns
t _{PLH2}	Propagation delay time, low to high	Sink to Source	80		251	ns
t _{PHL2}	Propagation delay time, high to low	Sink to Source	35		200	ns
t _{f1}	Output signal fall time	Sink Side	20		72	ns
t _{f2}	Output signal fall time	Source Side	20		72	ns
f _{SCL}	SCL clock frequency for internal register	Source Side			100	kHz
t _{W(L)}	Clock LOW period for I ² C register	Source Side	4.7			μS
t _{W(H)}	Clock HIGH period for internal register	Source Side	4.0			μS
t _{SU1}	Internal register setup time, SDA to SCL	Source Side	250			ns
t _{h(1)}	Internal register hold time, SCL to SDA	Source Side	0			μS
T _(buf)	Internal register bus free time between STOP and START	Source Side	4.7			μS
t _{su(2)}	Internal register setup time, SCL to START	Source Side	4.7			μS
t _{h(2)}	Internal register hold time, START to SCL	Source Side	4.0			μS
t _{su(3)}	Internal register hold time, SCL to STOP	Source Side	4.0			μS

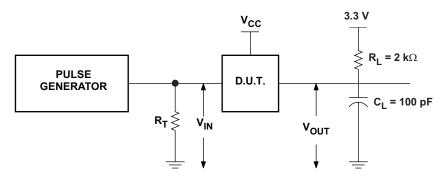


Figure 10. Source Side Test Circuit (SCL_SOURCE, SDA_SOURCE)

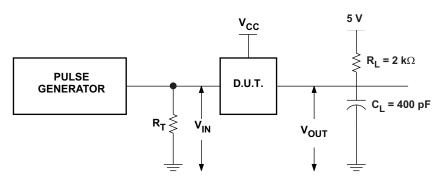


Figure 11. Sink Side Test Circuit (SCL_SINK,SDA_SINK)

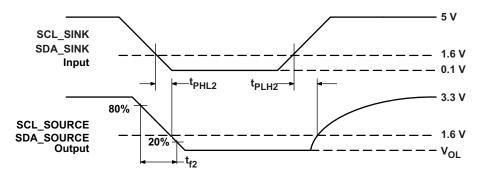


Figure 12. Source Side Output AC Measurements

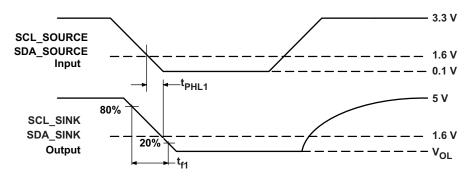


Figure 13. Sink Side Output AC Measurements

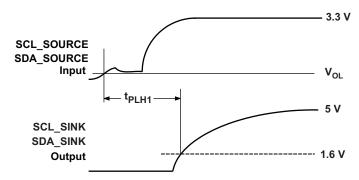


Figure 14. Sink Side Output AC Measurements Continued

TMDS and Main link pins

The main link inputs are designed to support DisplayPort 1.1 specification. The TMDS outputs of the SN75DP139 are designed to support the Digital Video Interface (DVI) 1.0 and High Definition Multimedia Interface (HDMI) 1.3 specifications. The differential output voltage swing can be fine tuned with the R_{Vsadj} resistor.

<u>₩豐梅•\$N75DP139"供应商</u>

ELECTRICAL CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V_{OH}	Single-ended HIGH level output voltage	AVCC = 3.3 V, R_T = 50 Ω ,	AVCC-10		AVCC+10	mV
V_{OL}	Single-ended LOW level output voltage		AVCC-600		AVCC-400	mV
V_{SWING}	Single-ended output voltage swing		400		600	mV
$V_{OC(SS)}$	Change in steady-state common-mode output voltage between logic states		-5		5	mV
$V_{OD(PP)}$	Peak-to-Peak output differential voltage		800		1200	mV
$V_{(O)SBY}$	Single-ended standby output voltage	AVCC = 3.3 V, R_T = 50 Ω , OE_N = High	AVCC-10		AVCC+10	mV
I _{(O)OFF}	Single-ended power down output current	$0V \le VCC \le 1.5 \text{ V, AVCC} = 3.3 \text{ V,}$ $R_T = 50\Omega$	-10		10	μΑ
Ios	Short circuit output current	See Figure 19	-15		15	mA
R _{INT}	Input termination impedance		40	50	60	Ω
V _{term}	Input termination voltage		1		2	V

SWITCHING CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time		250	350	600	ps
t _{PHL}	Propagation delay time		250	350	600	ps
t _{R1}	Rise Time (I2C_EN = HI, SRC = Hi-Z)		60	85	120	ps
t _{F1}	Fall Time (I2C_EN = HI, SRC = Hi-Z)		60	85	120	ps
t _{R2}	Rise Time (I2C_EN = Low, SRC = Hi-Z)			115	150	ps
t _{F2}	Fall Time (I2C_EN = Low, SRC = Hi-Z)			115	150	ps
t _{R3}	Rise Time (I2C_EN = HI, SRC = HI)			150	180	ps
t _{F3}	Fall Time (I2C_EN = HI, SRC = HI)			150	180	ps
t _{R4}	Rise Time (I2C_EN = HI, SRC = Low)	AVCC=3.3 V, $R_T = 50 \Omega$, $f = 1MHz$, $R_{Vsadj} = 4.02 k\Omega$		115	150	ps
t _{F4}	Fall Time (I2C_EN = HI, SRC = Low)	· Vysadj —		115	150	ps
t _{R5}	Rise Time (I2C_EN = Low, SRC = HI)			175	220	ps
t _{F5}	Fall Time (I2C_EN = Low, SRC = HI)			175	220	ps
t _{R6}	Rise Time (I2C_EN = Low, SRC = Low)			150	180	ps
t _{F6}	Fall Time (I2C_EN = Low, SRC = Low)			150	180	ps
t _{SK(P)}	Pulse skew			8	15	ps
t _{SK(D)}	Intra-pair skew			20	65	ps
t _{SK(O)}	Inter-pair skew			20	100	ps
t _{JITD(PP)}	Peak-to-peak output residual data jitter	AVCC = 3.3 V, R_T = 50 Ω , dR=2.5Gbps, TMDS output slew rate (default). R_{Vsadj} = 4.02 k Ω (refer to Figure 18)		14	50	ps
t _{JITC(PP)}	Peak-to-peak output residual clock jitter	AVCC = 3.3 V, R_T = 50 Ω , f = 250 MHz TMDS output slew rate (default). R_{Vsadj} = 4.02 k Ω (refer to Figure 18)		8	30	ps

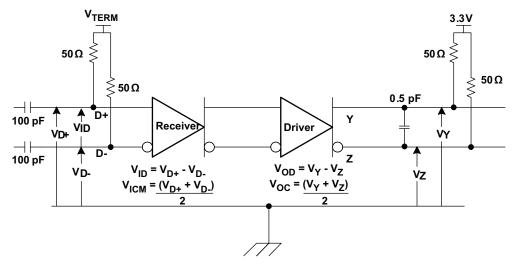


Figure 15. TMDS Main Link Test Circuit

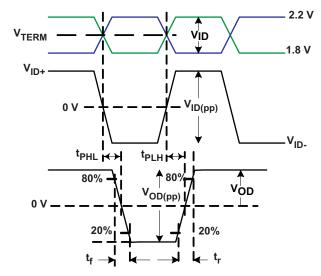
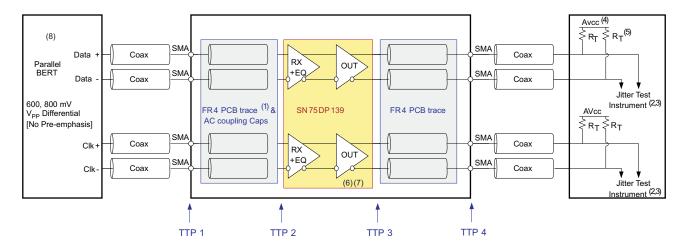



Figure 16. TMDS Main Link Timing Measurements

Figure 17. TMDS Main Link Common Mode Measurements

₩營制%N75DP139"供应商

- 1. The FR4 trace between TTP1 and TTP2 is designed to emulate 1-8" of FR4, AC coupling cap, connector and another 1-8" of FR4. Trace width 4 mils.
- All Jitter is measured at a BER of 10°
 Residual jitter reflects the total jitter measured at TTP4 minus the jitter measured at TTP1
- 4. AVCC = 3.3V 5. RT = 50Ω,
- 6. Jitter data is taken with SN75DP139 configured in the fastest slew rate setting(default)
- 7. Rvsadj = $4.02k\Omega$ 8. The input signal from parallel BERT does not have any pre-emphasis. Refer to recommended operating conditions

Figure 18. TMDS Jitter Measurements

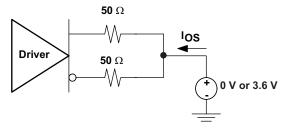
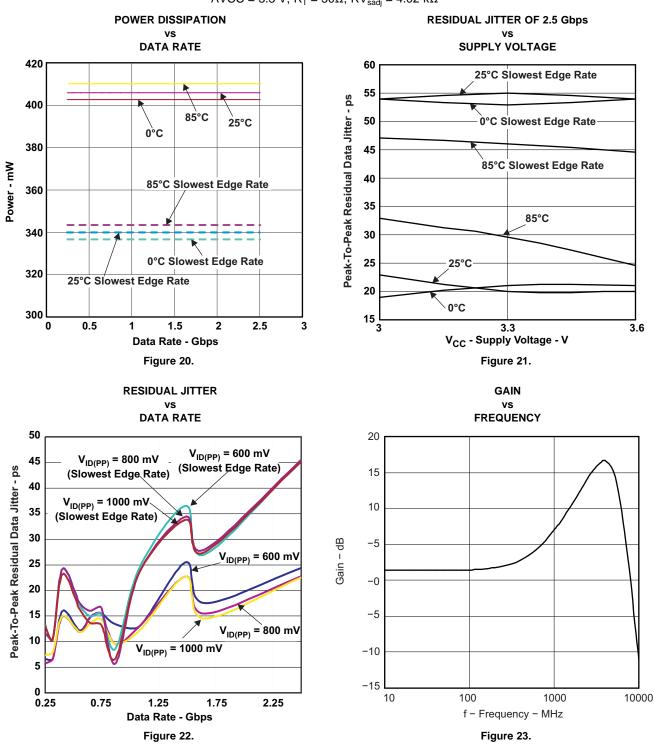



Figure 19. TMDS Main Link Short Circuit Output Circuit

TYPICAL CHARACTERISTICS

AVCC = 3.3 V, $R_T = 50\Omega$, $RV_{sadj} = 4.02 \text{ k}\Omega$

AVCC = 3.3 V, $R_T = 50\Omega$

APPLICATION INFORMATION

DVI APPLICATION

In DVI application case, it is recommended that between the SN75DP139 TMDS outputs (OUT_Dx) and a through hole DVI connector a series resistor placeholder is incorporated. This could help in case if there are signal integrity issues as well as help pass system level compliance.

I²C INTERFACE NOTES

The I2C interface can be used to access the internal memory of the SN75DP139. I²C is a two-wire serial interface developed by Philips Semiconductor (see I²C-Bus Specification, Version 2.1, January 2000). The bus consists of a data line (SDA) and a clock line (SCL) with pull-up structures. When the bus is *idle*, both SDA and SCL lines are pulled high. All the I²C compatible devices connect to the I²C bus through open drain I/O pins, SDA and SCL. A *master* device, usually a microcontroller or a digital signal processor, controls the bus. The master is responsible for generating the SCL signal and device addresses. The master also generates specific conditions that indicate the START and STOP of data transfer. A *slave* device receives and/or transmits data on the bus under control of the master device. The SN75DP139 works as a slave and supports the standard mode transfer (100 kbps) as defined in the I²C-Bus Specification.

The basic I2C start and stop access cycles are shown in Figure 25.

The basic access cycle consists of the following:

- A start condition
- A slave address cycle
- · Any number of data cycles
- A stop condition



Figure 25. I²C Start and Stop Conditions

GENERAL I²C PROTOCOL

- The *master* initiates data transfer by generating a *start condition*. The *start condition* is when a high-to-low transition occurs on the SDA line while SCL is high, as shown in Figure 27. All I²C-compatible devices should recognize a *start condition*.
- The master then generates the SCL pulses and transmits the 7-bit address and the read/write direction bit R/W on the SDA line. During all transmissions, the master ensures that data is valid. A valid data condition requires the SDA line to be stable during the entire high period of the clock pulse (see Figure 26). All devices recognize the address sent by the master and compare it to their internal fixed addresses. Only the slave device with a matching address generates an acknowledge (see Figure 27) by pulling the SDA line low during the entire high period of the ninth SCL cycle. On detecting this acknowledge, the master knows that a communication link with a slave has been established.
- The master generates further SCL cycles to either *transmit* data to the slave (R/W bit 0) or *receive* data from the slave (R/W bit 1). In either case, the receiver needs to acknowledge the data sent by the *transmitter*. So an acknowledge signal can either be generated by the master or by the slave, depending on which one is the receiver. The 9-bit valid data sequences consisting of 8-bit data and 1-bit acknowledge can continue as long as necessary (See Figure 28).
- To signal the end of the data transfer, the master generates a stop condition by pulling the SDA line from low
 to high while the SCL line is high (see Figure 28). This releases the bus and stops the communication link

with the addressed slave. All I²C compatible devices must recognize the stop condition. Upon the receipt of a *stop condition*, all devices know that the bus is released, and they wait for a *start condition* followed by a matching address.

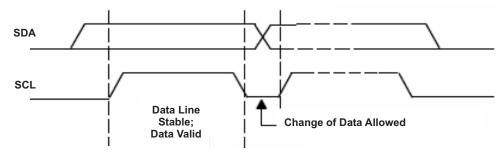


Figure 26. I²C Bit Transfer

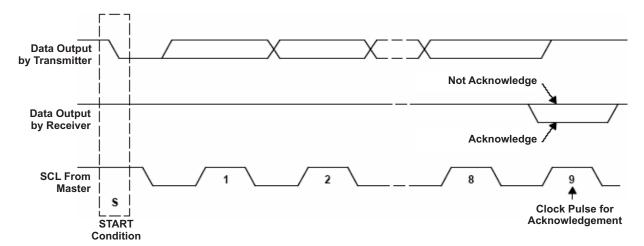


Figure 27. I²C Acknowledge

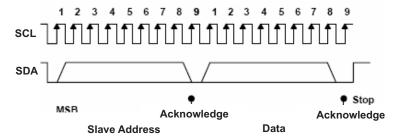


Figure 28. I²C Address and Data Cycles

During a read cycle, the slave receiver will acknowledge the initial address byte if it decodes the address as its address. Following this initial acknowledge by the slave, the master device becomes a receiver and acknowledges data bytes sent by the slave. When the master has received all of the requested data bytes from the slave, the not acknowledge (A) condition is initiated by the master by keeping the SDA signal high just before it asserts the stop (P) condition. This sequence terminates a read cycle as shown in Figure 29 and Figure 30. See Example – Reading from the SN75DP139 section for more information.

<u>₩豐街®N75DP139"供应商</u>

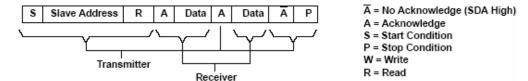


Figure 29. I²C Read Cycle

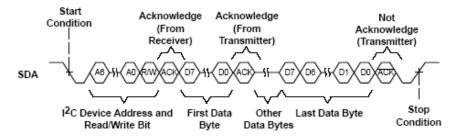


Figure 30. Multiple Byte Read Transfer

SLAVE ADDRESS

Both SDA and SCL must be connected to a positive supply voltage via a pull-up resistor. These resistors should comply with the I^2C specification that ranges from $2k\Omega$ to $19k\Omega$. When the bus is free, both lines are high. The address byte is the first byte received following the START condition from the master device. The 7 bit address is factory preset to 1000000. Table 2 lists the calls that the SN75DP139 will respond to.

Table 2. SN75DP139 Slave Address

	Fixed Address										
Bit 7 (MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (R/W)				
1	0	0	0	0	0	0	1				

Sink Port Selection Register and Source Plug-In Status Register Description (Sub-Address)

The SN75DP139 operates using a multiple byte transfer protocol similar to Figure 30. The internal memory of the SN75DP139 contains the phrase "DP-HDMI ADAPTOR<EOT>" converted to ASCII characters. The internal memory address registers and the value of each can be found in Table 3.

During a read cycle, the SN75DP139 will send the data in its selected sub-address in a single transfer to the master device requesting the information. See the *Example – Reading from the SN75DP139* section of this document for the proper procedure on reading from the SN75DP139.

Table 3. SN75DP139 Sink Port and Source Plug-In Status Registers Selection

Address	0x00	0x01	0x02	0x03	0x04	0x05	0x06	0x07	0x08	0x09	0x0A	0x0B	0x0C	0x0D	0x0E	0x0F	0x10
Data	44	50	2D	48	44	4D	49	20	41	44	41	50	54	4F	52	04	FF

EXAMPLE - READING FROM THE SN75DP139:

The read operation consists of several steps. The I²C master begins the communication with the transmission of the start sequence followed by the slave address of the SN75DP139 and logic address of 00h. The SN75DP139 will acknowledge it's presence to the master and begin to transmit the contents of the memory registers. After each byte is transferred the SN75DP139 will wait for either an acknowledge (ACK) or a not-acknowledge (NACK) from the master. If an ACK is received the next byte of data will be transmitted. If a NACK is received the data transmission sequence is expected to end and the master should send the stop command.

The SN75DP139 will continue to send data as long as the master continues to acknowledge each byte transmission. If an ACK is received after the transmission of byte 0x0F the SN75DP139 will transmit byte 0x10 and continue to transmit byte 0x10 for all further ACK's until a NACK is received.

The SN75DP139 also supports an accelerated read mode where steps 1-6 can be skipped.

SN75DP139 Road Phase

Step 1	0							
I ² C Start (Master)	S							
Step 2	7	6	5	4	3	2	1	0
I ² C General Address Write (Master)	1	0	0	0	0	0	0	0
Step 3	9							
I ² C Acknowledge (Slave)	А							
Step 4	7	6	5	4	3	2	1	0
I ² C Logic Address (Master)	0	0	0	0	0	0	0	0
Step 5	9							
I ² C Acknowledge (Slave)	Α							
Step 6	0							
I ² C Stop (Master)	Р							
Step 7	0							
I ² C Start (Master)	S							
Step 8	7	6	5	4	3	2	1	0
I ² C General Address Read (Master)	1	0	0	0	0	0	0	1
Step 9	9							
I ² C Acknowledge (Slave)	Α							
Step 10	7	6	5	4	3	2	1	0
I ² C Read Data (Slave)	Data							

Where Data is determined by the Logic values Contained in the Sink Port Register

Step 11	9
I ² C Not-Acknowledge (Master)	Х

<u>₩豐梅•\$N75DP139"供应商</u>

SLLS977A - APRIL 2009 - REVISED JULY 2010

Where X is an A (Acknowledge) or \overline{A} (Not-Acknowledge) An A causes the pointer to increment and step 10 is repeated. An \overline{A} causes the slave to stop transmitting and proceeds to step 12.

Step 12	0
I ² C Stop (Master)	Р

REVISION HISTORY

Cł	nanges from Original (April 2009) to Revision A	Page
•	Added to FEATURES "Achieves HDMI 1.4a compliance and 3D support with TMDS clock rates up to 250MHz"	
•	Added HDMI compliant specification to DESCRIPTION section	<i>•</i>

PACKAGE OPTION ADDENDUM

查询"SN75DP139"供应商

8-Dec-2009

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins F	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
SN75DP139RGZR	ACTIVE	VQFN	RGZ	48	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
SN75DP139RGZT	ACTIVE	VQFN	RGZ	48	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

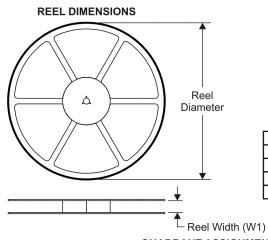
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

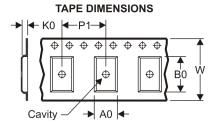
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

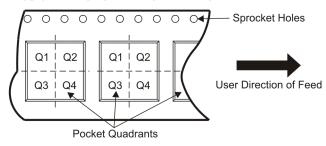
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



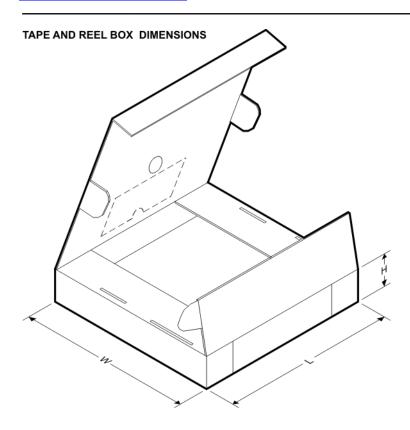
查询"SN75DP139"供应商

20-Jul-2010


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

7 ili dilitoriolorio di o fiorilitai												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN75DP139RGZR	VQFN	RGZ	48	2500	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q2
SN75DP139RGZT	VQFN	RGZ	48	250	180.0	16.4	7.3	7.3	1.5	12.0	16.0	Q2

查询"SN75DP139"供应商

20-Jul-2010

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins SPQ		Length (mm)	Width (mm)	Height (mm)	
SN75DP139RGZR	VQFN	RGZ	48	2500	346.0	346.0	33.0	
SN75DP139RGZT	VQFN	RGZ	48	250	190.5	212.7	31.8	

查询"SN75DP139"供应商

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio **Data Converters** dataconverter.ti.com Automotive www.ti.com/automotive **DLP® Products** www.dlp.com Communications and www.ti.com/communications Telecom DSP Computers and www.ti.com/computers dsp.ti.com Peripherals Clocks and Timers www.ti.com/clocks Consumer Electronics www.ti.com/consumer-apps Interface interface.ti.com Energy www.ti.com/energy Industrial www.ti.com/industrial Logic logic.ti.com Power Mamt power.ti.com Medical www.ti.com/medical Microcontrollers microcontroller.ti.com www.ti.com/security Security **RFID** www.ti-rfid.com Space, Avionics & www.ti.com/space-avionics-defense Defense RF/IF and ZigBee® Solutions www.ti.com/lprf Video and Imaging www.ti.com/video Wireless www.ti.com/wireless-apps