

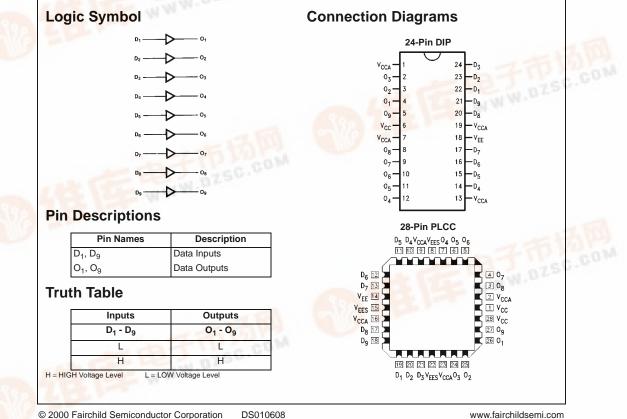
FAIRCHILD

SEMICONDUCTOR TM

100322 Low Power 9-Bit Buffer

General Description

The 100322 is a monolithic 9-bit buffer. The device contains nine non-inverting buffer gates with single input and output. All inputs have 50 k Ω pull-down resistors and all outputs are buffered. October 1989 Revised August 2000 100322 Low Power 9-Bit Buffer


Features

- 30% power reduction of the 100122
- 2000V ESD protection
- Pin/function compatible with 100122
- Voltage compensated operating range = -4.2V to -5.7V
- Available to MIL-STD-883
- Available to industrial grade temperature range (PLCC package only)

Ordering Code:

Order Number	Package Number	Package Description
100322PC	N24E	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-010, 0.400 Wide
100322QC	V28A	28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square
100322QI		28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square Industrial Temperature Range (–40°C to +85°C)

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

100322

Absolute Maximum Ratings(Note 1)

Storage Temperature (T _{STG})	-65°C to +150°C
Maximum Junction Temperature (T _J)	+150°C
V _{EE} Pin Potential to Ground Pin	-7.0V to +0.5V
Input Voltage (DC)	V _{EE} to +0.5V
Output Current (DC Output HIGH)	–50 mA
ESD (Note 2)	≥ 2000V

Recommended Operating Conditions

Case Temperature (T _C)	
Commercial	$0^{\circ}C$ to $+85^{\circ}C$
Industrial	-40°C to +85°C
Supply Voltage (V _{EE})	-5.7V to -4.2V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Commercial Version

DC Electrical Characteristics (Note 3)

$V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$, $T_C = 0^{\circ}C$ to $+85^{\circ}C$

Symbol	Parameter	Min	Тур	Max	Units	Co	onditions		
V _{он}	Output HIGH Voltage	-1025	-955	-870	mV	V _{IN} =V _{IH (Max)}	Loading with		
/ _{OL}	Output LOW Voltage	-1830	-1705	-1620	mv	or V _{IL (Min)}	50 Ω to –2.0V		
V _{онс}	Output HIGH Voltage	-1035			mV	$V_{IN} = V_{IH(Min)}$	Loading with		
V _{OLC}	Output LOW Voltage			-1610	IIIV	or V _{IL (Max)}	50Ω to $-2.0V$		
V _{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal			
						for All Inputs			
V _{IL}	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW S	ignal		
						for All Inputs			
կլ	Input LOW Current	0.50			μA	$V_{IN} = V_{IL (Min)}$			
I _{IH}	Input HIGH Current			240	μA	V _{IN} = V _{IH (Max)}			
I _{EE}	Power Supply Current	-65		-30	mA	Inputs Open			

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are cho-sen to guarantee operation under "worst case" conditions.

DIP AC Electrical Characteristics

$\mathsf{V}_{\mathsf{EE}} = -4.2\mathsf{V}$ to $-5.7\mathsf{V},\,\mathsf{V}_{\mathsf{CC}} = \mathsf{V}_{\mathsf{CCA}} = \mathsf{GND}$

Symbol	Parameter	$\mathbf{T}_{\mathbf{C}} = 0^{\circ}\mathbf{C}$		$T_C = +25^{\circ}C$		T _C = +85°C		Units	Conditions
		Min	Max	Min	Max	Min	Max	Units	Conditions
t _{PLH}	Propagation Delay	0.45	1.45	0.45	1.45	0.45	1.55	ns	Figures 1, 2
t _{PHL}	Data to Output	0.45	1.45	0.45	1.45	0.45	1.55	115	(Note 4)
t _{TLH}	Transition Time	0.35	1.20	0.35	1.20	0.35	1.20	ns	Figures 1, 2
t _{THL}	20% to 80%, 80% to 20%	0.55	1.20	0.55	1.20	0.55	1.20	115	rigules 1, 2

Note 4: The propagation delay specified is for single output switching. Delays may vary up to 200 ps with multiple outputs switching.

.

Commercial Version (Continued) **PLCC AC Electrical Characteristics**

.....

100322

Symbol	Parameter	T _C =	0°C	$T_C = +25^{\circ}C$		T _C = +85°C		Units	Conditions
Symbol	Falameter	Min	Max	Min	Max	Min	Max	Units	Conditions
t _{PLH} t _{PHL}	Propagation Delay Data to Output	0.45	1.25	0.45	1.25	0.45	1.35	ns	Figures 1, 2 (Note 5)
t _{TLH} t _{THL}	Transition Time 20% to 80%, 80% to 20%	0.35	1.10	0.35	1.10	0.35	1.10	ns	Figures 1, 2
t _{oshl}	Maximum Skew Common Edge Output-to-Output Variation Data to Output Path		200		200		200	ps	(Note 6)
t _{oslh}	Maximum Skew Common Edge Output-to-Output Variation Data to Output Path		200		200		200	ps	(Note 6)
t _{OST}	Maximum Skew Opposite Edge Output-to-Output Variation Data to Output Path		260		260		260	ps	(Note 6)
t _{PS}	Maximum Skew Pin (Signal) Transition Variation Data to Output Path		200		200		200	ps	(Note 6)

Note 5: The propagation delay specified is for single output switching. Delays may vary up to 200 ps with multiple outputs switching.

Note 6: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH to LOW (t_{OSHL}), or LOW to HIGH (t_{OSLH}), or in opposite

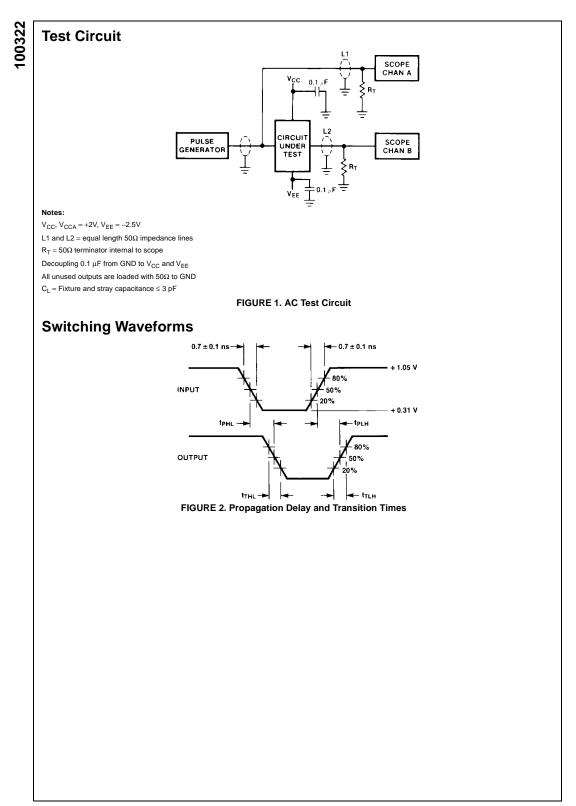
directions both HL and LH (t_{OST}). Parameters t_{OST} and t_{PS} guaranteed by design.

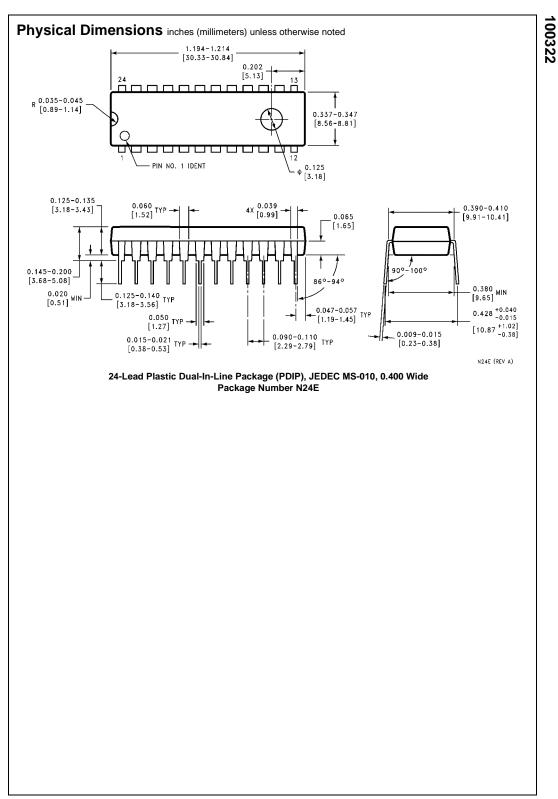
Industrial Version

PLCC DC Electrical Characteristics (Note 7)

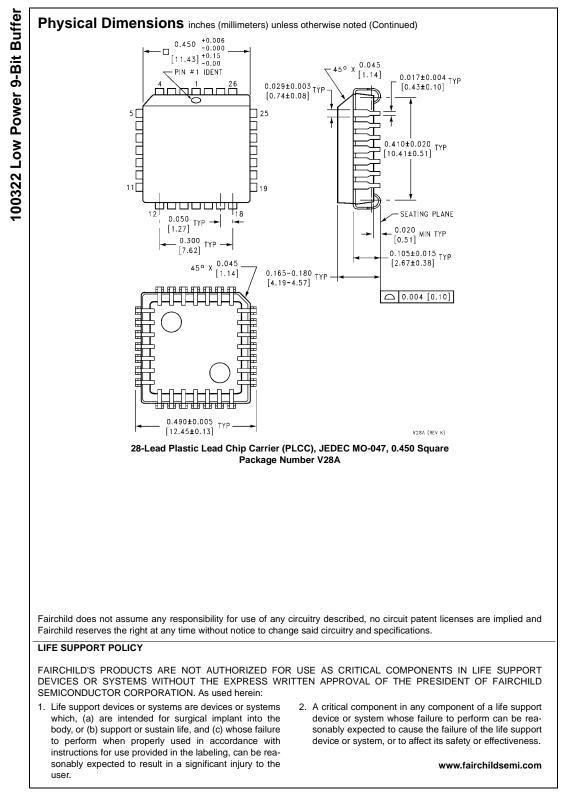
 $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$, $T_{C} = -40^{\circ}C$ to $+85^{\circ}C$

Symbol	Parameter	T _C = -	–40°C	$T_C = 0^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions		
Gymbol		Min	Max	Min	Max	Units	Conditions		
V _{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	V _{IN} =V _{IH (Max)}	Loading with	
V _{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620	1117	or V _{IL (Min)}	50 Ω to –2.0V	
V _{OHC}	Output HIGH Voltage	-1095		-1035		mV	V _{IN} = V _{IH (Min)}	Loading with	
V _{OLC}	Output LOW Voltage		-1565		-1610	IIIV	or V _{IL (Max)}	50Ω to $-2.0V$	
V _{IH}	Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Signal		
							for All Inputs		
VIL	Input LOW Voltage	-1830	-1480	-1830	-1475	mV	Guaranteed LOW Signal		
							for All Inputs		
I _{IL}	Input LOW Current	0.50		0.50		μΑ	$V_{IN} = V_{IL (Min)}$		
I _{IH}	Input HIGH Current		300		240	μΑ	V _{IN} = V _{IH (Max)}		
I _{EE}	Power Supply Current	-65	-30	-65	-30	mA	Inputs Open		


Note 7: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.


PLCC AC Electrical Characteristics

$V_{EE} = -4.2V$ to $-5.7V$, $V_{CC} = V_{CCA} = GND$										
Symbol	Parameter	$T_C = -40^{\circ}C$		T _C = +25°C		$T_C = +85^{\circ}C$		Units	Conditions	
		Min	Max	Min	Max	Min	Max	Unita	Conditions	
t _{PLH}	Propagation Delay	0.45	1.25	0.45	1.25	0.45	1.35	ns	Figures 1, 2	
t _{PHL}	Data to Output	0.45	1.25	0.45	1.25	0.45	1.55	113	(Note 8)	
t _{TLH}	Transition Time	0.30	1.20	0.35	1.10	0.35	1.10	DC	Figures 1, 2	
t _{THL}	20% to 80%, 80% to 20%	0.50	1.20	0.55	1.10	0.55	1.10	ns	Figures 1, 2	


Note 8: The propagation delay specified is for single output switching. Delays may vary up to 200 ps with multiple outputs switching.

www.fairchildsemi.com

www.fairchildsemi.com

www.fairchildsemi.com