FAIRCHILD

74ALVCH16373 Low Voltage 16-Bit Transparent Latch with Bushold

General Description

Features

- 1.65V to 3.6V V_{CC} supply operation
- 3.6V tolerant control inputs and outputs
- Bushold on data inputs eliminates the need for external pull-up/pull-down resistors
- t_{PD} (I_n to O_n)
 - 3.6 ns max for 3.0V to 3.6V V_{CC}
 - 4.5 ns max for 2.3V to 2.7V V_{CC}
 - 6.8 ns max for 1.65V to 1.95V V_{CC}
- Uses patented noise/EMI reduction circuitry
- Latch-up conforms to JEDEC JED78
- ESD performance:
- Human body model > 2000V Machine model > 200V

Ordering Code:

ith 3-STATE outputs and is intended for bus oriented oplications. The device is byte controlled. The flip-flops popear to be transparent to the data when the Latch nable (LE) is HIGH. When LE is LOW, the data that meets e setup time is latched. Data appears on the bus when te Output Enable (\overline{OE}) is LOW. When \overline{OE} is HIGH, the utputs are in a high impedance state. he ALVCH16373 data inputs include active bushold cir- uitry, eliminating the need for external pull-up resistors to old unused or floating data inputs at a valid logic level. he 74ALVCH16373 is designed for low voltage (1.65V to 6V) V_{CC} applications with output compatibility up to 3.6V. he 74ALVCH16373 is fabricated with an advanced CMOS chnology to achieve high speed operation while maintain g low CMOS power dissipation.3.6V tolerant control inputs and outputs Bushold on data inputs and outputs Bushold on data inputs eliminates the need for external pull-up/pull-down resistors to 2.7V V _{CC} 6.8 ns max for 3.0V to 3.6V V _{CC} 4.5 ns max for 1.65V to 1.95V V _{CC} 0. Uses patented noise/EMI reduction circuitry ESD performance: Human body model > 2000V Machine model > 200V Machine model > 200VOrder NumberPackage NumberPackage NumberPackage DescriptionALVCH16373TMTD4848-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide avices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.		16979	
The ALVCH16373 contains sixteen non-inverting latches the 3-STATE outputs and is intended for bus oriented policiations. The device is byte controlled. The flip-flops page to be transparent to the data when the Latch hable (LE) is HIGH. When LE is LOW, the data that meets e setup time is latched. Data appears on the bus when e output Enable (OE) is LOW. When OE is HIGH, the try, eliminating the need for external pull-up resistors to id unused or floating data inputs at a valid logic level. the 74ALVCH16373 is designed for low voltage (1.65V to SV) V _{CC} applications with output compatibility up to 3.6V. the 74ALVCH16373 is fabricated with an advanced CMOS pow CMOS power dissipation. Predering Code: Order Number Package Package Description AUVCH16373 MTD48 48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide vices also available in Tape and Reel. Specify by appending suffix letter 'X' to the ordering code. ogic Symbol			nsparent Latch with Bushold
The ALVCH16373 contains sixteen non-inverting latches with 3-STATE outputs and is intended for bus oriented pplications. The device is byte controlled. The flip-flops paper to be transparent to the data when the Latch incable (LE) is HIGH. When LE is LOW, the data that meets the setup time is latched. Data appears on the bus when the Output Enable (OE) is LOW. When OE is HIGH, the utputs are in a high impedance state. The ALVCH16373 data inputs include active bushold cir- uitry, eliminating the need for external pull-up resistors to old unused or floating data inputs at a valid logic level. The 74ALVCH16373 is designed for low voltage (1.65V to L6V) V _{CC} applications with output compatibility up to 3.6V. The 74ALVCH16373 is fabricated with an advanced CMOS schnology to achieve high speed operation while maintain- rag low CMOS power dissipation. Drdering Code: Order Number Package Description ALVCH16373T MTD48 48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide tevices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code. Logic Symbol		-	•
Order Number Package Number Package Description 4ALVCH16373T MTD48 48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code. Logic Symbol	vith 3-STATE output applications. The development to be transp Enable (LE) is HIGH. the setup time is late the output Enable (C putputs are in a high is the ALVCH16373 da suitry, eliminating the loold unused or floating the 74ALVCH16373 8.6V) V _{CC} application The 74ALVCH16373 echnology to achieve ing low CMOS power	ts and is intended for bus vice is byte controlled. The varent to the data when to When LE is LOW, the data to hed. Data appears on the DE) is LOW. When OE is h impedance state. ata inputs include active but need for external pull-up re g data inputs at a valid logic is designed for low voltage s with output compatibility u is fabricated with an advance high speed operation while dissipation.	s oriented
Order Number Number Package Description 4ALVCH16373T MTD48 48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide bevices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.			
Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code. Ogic Symbol ${O}$ $\overline{\overline{ot}_{1}}$ ${LE_1}$ \overline{ot}_{1} \overline{ot}_{2} \overline{ot}_{2} \overline{ot}_{2} \overline{ot}_{2} \overline{ot}_{2} \overline{ot}_{2}	Order Number		Package Description
-ogic Symbol -ogic Symbol $-o_{\overline{0}} \overline{c}_{t_1}$ $-o_{\overline{1}} \overline{c}_{t_1}$ $-o_{\overline{1}} \overline{c}_{t_1}$ $-o_{\overline{1}} \overline{c}_{t_1}$ $-o_{\overline{1}} \overline{c}_{t_1}$ $-o_{\overline{1}} \overline{c}_{t_1}$ $-o_{\overline{1}} \overline{c}_{t_1}$			
		ape and Reel. Specify by appending	Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

查询"74ALVCH16373TX"供应商

Connection D	Diagram	
	<u> </u>	
0E1 -		48 — LE ₁
0 ₀ —	2	47 — I ₀
0 ₁ —	3	46 — ų
GND —	4	45 — GND
0 ₂ —	5	44 — I ₂
o ₃ —	6	43 — I ₃
v _{cc} —	7	42 — V _{CC}
0 ₄ —	8	41 — I ₄
0 ₅ —	9	40 — I ₅
gnd 🗕	10	39 — GND
o ₆ —	11	38 — I ₆
0 ₇ —	12	37 — I ₇
0 ₈ —	13	36 — I ₈
0 ₉ —	14	35 — I ₉
GND -	15	34 — GND
0 ₁₀ —	16	33 — I ₁₀
0 ₁₁ —	17	32 — I ₁₁
v _{cc} –	18	31 — V _{CC}
0 ₁₂ —	19	30 — I ₁₂
0 ₁₃ —	20	29 — I ₁₃
GND —	21	28 — GND
0 ₁₄ —	22	27 — I ₁₄
0 ₁₅ —	23	26 — l ₁₅
OE ₂ -	24	25 — LE ₂

Pin Descriptions

Pin Names	Description				
0E _n	Output Enable Input (Active LOW)				
LEn	Latch Enable Input				
I ₀ —I ₁₅	Bushold Inputs				
O ₀ -O ₁₅	Outputs				
NC	No Connect				

Truth Tables

	Inputs		Outputs
LE ₁	OE ₁	I ₀ —I ₇	0 ₀ –0 ₇
Х	Н	Х	Z
н	L	L	L
н	L	Н	н
L	L	х	O ₀
	Inputs		Outputs
LE ₂	OE ₂	I ₈ -I ₁₅	0 ₈ –0 ₁₅
Х	Н	Х	Z
н	L	L	L
н	1	н	н

Х

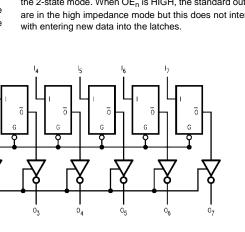
 O_0

L

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial (HIGH or LOW, control inputs may not float) Z = High Impedance O₀ = Previous O₀ before HIGH-to-LOW of Latch Enable

L

Functional Description


The 74ALVCH16373 contains sixteen edge D-type latches with 3-STATE outputs. The device is byte controlled with each byte functioning identically, but independent of the other. Control pins can be shorted together to obtain full 16-bit operation. The following description applies to each byte. When the Latch Enable (LE_n) input is HIGH, data on the I_n enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time

010

011

Logic Diagram

its I input changes. When LE_n is LOW, the latches store information that was present on the I inputs a setup time preceding the HIGH-to-LOW transition on LE_n. The 3-STATE outputs are controlled by the Output Enable (\overline{OE}_n) input. When \overline{OE}_n is LOW the standard outputs are in the 2-state mode. When \overline{OE}_n is HIGH, the standard outputs are in the high impedance mode but this does not interfere with entering new data into the latches.

www.fairchildsemi.com

02

⁰12

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

013

014

015

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +4.6V
DC Input Voltage (VI)	-0.5V to 4.6V
Output Voltage (V _O) (Note 2)	–0.5V to V _{CC} +0.5V
DC Input Diode Current (I _{IK})	
$V_{I} < 0V$	–50 mA
DC Output Diode Current (I _{OK})	
V _O < 0V	–50 mA
DC Output Source/Sink Current	
(I _{OH} /I _{OL})	±50 mA
DC V _{CC} or GND Current per	
Supply Pin (I _{CC} or GND)	±100 mA
Storage Temperature Range (T _{STG})	-65°C to +150°C

Recommended Operating

Conditions (Note 3)

Power Supply	
Operating	1.65V to 3.6V
Input Voltage (V _I)	0V to V _{CC}
Output Voltage (V _O)	0V to V_{CC}
Free Air Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Minimum Input Edge Rate (Δt/ΔV)	
$V_{IN} = 0.8V$ to 2.0V, $V_{CC} = 3.0V$	10 ns/V

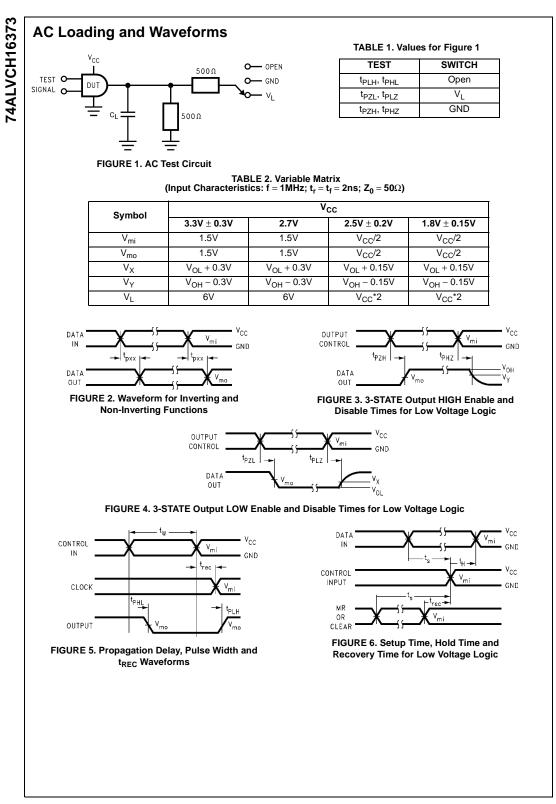
Note 1: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

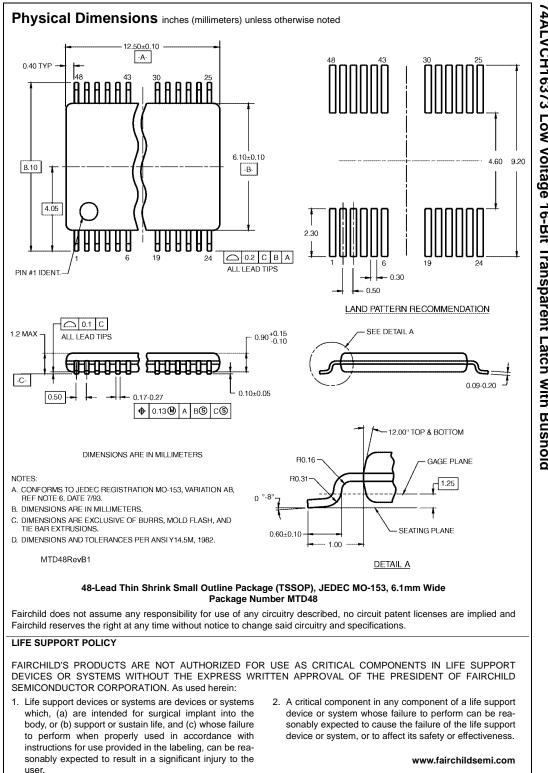
Note 2: I_O Absolute Maximum Rating must be observed.

Note 3: Floating or unused inputs must be held HIGH or LOW.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Units
V _{IH}	HIGH Level Input Voltage		1.65 -1.95	0.65 x V _{CC}		
			2.3 - 2.7	1.7		V
			2.7 - 3.6	2.0		
/ _{IL}	LOW Level Input Voltage		1.65 -1.95		$0.35 \times V_{CC}$	
			2.3 - 2.7		0.7	V
			2.7 - 3.6		0.8	
/ _{он}	HIGH Level Output Voltage	I _{OH} = −100 μA	1.65 - 3.6	V _{CC} - 0.2		
		$I_{OH} = -4 \text{ mA}$	1.65	1.2		
		$I_{OH} = -6 \text{ mA}$	2.3	2		
		I _{OH} = -12 mA	2.3	1.7		V
			2.7	2.2		
			3.0	2.4		
		$I_{OH} = -24 \text{ mA}$	3.0	2		
V _{OL}	LOW Level Output Voltage	$I_{OL} = 100 \ \mu A$	1.65 - 3.6		0.2	
		$I_{OL} = 4 \text{ mA}$	1.65		0.45	
		$I_{OL} = 6 \text{ mA}$	2.3		0.4	v
		$I_{OL} = 12mA$	2.3		0.7	v
			2.7		0.4	
		I _{OL} = 24 mA	3		0.55	
4	Input Leakage Current	$0 \le V_I \le 3.6V$	3.6		±5.0	μΑ
I(HOLD)	Bushold Input Minimum	$V_{IN} = 0.58V$	1.65	25		
	Drive Hold Current	$V_{IN} = 1.07V$	1.65	-25		
		V _{IN} = 0.7V	2.3	45		
		$V_{IN} = 1.7V$	2.3	-45		μA
		$V_{IN} = 0.8V$	3.0	75		
		$V_{IN} = 2.0V$	3.0	-75		
		$0 < V_O \le 3.6V$	3.6		±500	
oz	3-STATE Output Leakage	$0 \le V_O \le 3.6V$	3.6		±10	μA
l _{cc}	Quiescent Supply Current	$V_{I} = V_{CC}$ or GND, $I_{O} = 0$	3.6		40	μA
Δl _{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	3 -3.6		750	μΑ


AC Electrical Characteristics


		$T_A = -40^{\circ}C$ to $+85^{\circ}C$, $R_L = 500\Omega$								
Symbol	-	C _L = 50 pF			C _L = 30 pF			Units		
Symbol	Parameter	V $_{CC}$ = 3.3V \pm 0.3V		V _{CC} = 2.7V		V $_{CC}$ = 2.5V \pm 0.2V		V $_{CC}$ = 1.8V \pm 0.15V		Units
		Min	Max	Min	Max	Min	Max	Min	Max	
t _W	Pulse Width	3.3		3.3		3.3		4.0		ns
t _S	Setup Time	1.1		1		1		2.5		ns
t _H	Hold Time	1.4		1.7		1.5		1.0		ns
t _{PHL} , t _{PLH}	Propagation Delay In to On	1.1	3.6		4.3	1	4.5	1.5	6.8	ns
t _{PHL} , t _{PLH}	Propagation Delay LE to On	1	3.9		4.6	1	4.9	1.5	7.8	ns
t _{PZL} , t _{PZH}	Output Enable Time	1.0	4.7		5.7	1.0	6.0	1.5	9.2	ns
t _{PLZ} , t _{PHZ}	Output Disable Time	1.4	4.1		4.5	1.2	5.1	1.5	6.8	ns

Capacitance

Symbol	Parameter		Conditions	T _A =	$T_A = +25^{\circ}C$		
Symbol			Conditions	V _{CC}	Typical	Units	
CIN	Input Capacitance	Control	$V_I = 0V \text{ or } V_{CC}$	3.3	3	pF	
	Data	Data	$V_I = 0V \text{ or } V_{CC}$	3.3	6	рг	
C _{OUT}	Output Capacitance	•	$V_I = 0V \text{ or } V_{CC}$	3.3	7	pF	
C _{PD}	Power Dissipation Capacitance	Outputs Enabled	$f = 10 \text{ MHz}, C_{L} = 50 \text{ pF}$	3.3	22		
				2.5	19	pF	
		Outputs Disabled	$f = 10 \text{ MHz}, C_L = 50 \text{ pF}$	3.3	5	рг	
				2.5	4		

74ALVCH16373

7