54193, 54LS193 Counters Presettable 4-Bit Binary Up/Down Counters **Product Specification** #### Military Logic Products #### **FEATURES** - Synchronous reversible 4-bit binary counting - Asynchronous parallel load - Asynchronous reset (clear) - Expandable without external logic #### DESCRIPTION The 54193 and 54LS193 are 4-bit synchronous up/down counters—that count in the binary mode. Separate up/down clocks, CP_{u} and CP_{D} respectively, simplify operation. The outputs change state synchronously with the Low-to-High transition of either Clock input. If the CP_{u} clock is pulsed while CP_{D} is held High, the device will count up ... if CP_{D} is pulsed while the CP_{u} is held High, the device will count down. Only one Clock input can be held High at any time, or erroneous operation will result. The device can be cleared at any time by the asynchronous reset pin it may also be loaded in parallel by activating the asynchronous parallel load oin. #### **ORDERING INFORMATION** | DESCRIPTION | ORDER CODE | |-------------------|--------------------------| | Ceramic DIP | 54193/BEA
54LS193/BEA | | Ceramic Flat Pack | 54193/BFA
54LS193/BFA | | Ceramic LLCC | 54LS193/B2A | ### INPUT AND OUTPUT LOADING AND FAN-OUT TABLE | PINS | DESCRIPTION | 54 | 54LS | |------|-------------|------|--------| | All | Inputs | 1UL | 1LSUL | | All | Outputs | 10UL | 10LSUL | NOTE: Where a 54 Unit Load (UL) is understood to be 40 μ A I_{IH} and -1.6mA I_{IL}, and a 54LS Unit Load (LSUL) is 20 μ A I_{IH} and -0.4mA I_{IL}. #### PIN CONFIGURATION #### LOGIC SYMBOL February 20, 1990 585 853-0202 98869 54193, 54LS193 # <u> 查询"54193/BFA"供应商</u> #### LOGIC DIAGRAM Inside the device are four master-slave JK flip-flops with the necessary steering logic to provide the asynchronous reset, load, and synchronous count-up and count-down functions. Each flip-flop contains JK feedback from slave to master, such that a Low-to-High transition on the $\mbox{\rm CP}_D$ input will decrease the count by one, while a similar transition on the $\mbox{\rm CP}_U$ input will advance the count by one. One clock should be held High while counting with the other, because the circuit will either count by two's or not at all, depending on the state of the first flip-flop, which cannot toggle as long as either Clock input is Low. Applications requiring reversible operation must make the reversing decision while the activating clock is High to avoid erroneous counts. The Terminal Count Up (TC_U) and Terminal Count down (TC_D) outputs are normally High. When the circuit has reached the maximum count state of the next High-to-Low transition of CP_U will cause TC_U to go Low. TC_U will stay Low until CP_U goes High again, duplicating the count up clock, although delayed by two gate delays. Likewise, the TC_D output will go Low when the circuit is in the zero state and the CP_D goes Low. The TC outputs can be used as the Clock input signals to the next higher order circuit in a multistage counter, since they duplicate the clock waveforms. Multistage counters will not be fully synchronous, since there is a two-gate delay time difference added for each stage that is added. The counter may be preset by the asynchronous parallel load capability of the circuit. Information present on the parallel Data inputs $(D_0 - D_3)$ is loaded into the counter and appears on the outputs regardless of the conditions of the Clock inputs when the Parallel Load (PL) input is Low. A High level on the Master Reset (MR) input will disable the parallel load gates, override both Clock inputs, and set all O outputs Low. If one of the Clock inputs is Low during and after a reset or load operation, the next Low-to-High transition of that clock will be interpreted as a legitimate signal and will be counted. #### STATE DIAGRAM 54193, 54LS193 查询"54193/BFA"供应商 ### MODE SELECT — FUNCTION TABLE | MODE SELECT — | 1 | | | INP | ITS | | | | | | OUT | PUTS | | | |-------------------|--|-----------------|------------------|--|-----|----------------|-------|--|----------------|-------|-----------------|----------------|----------|------| | OPERATING
MODE | MR | PL | CPu | CPD | Do | D ₁ | D_2 | D ₃ | Q ₀ | Qı | CJ ₂ | Q ₃ | ΤCυ | TCD | | | Н Н | X | X | 1 | × | X | × | X | L | L | L | L | Н | L | | Reset (clear) | " | ı î | x | Н . | x | x | × | х | L | L | L | L. | Н | Н | | | | ^- | X | | L | L | L | L | L | L | L | L | н | L | | D 11-11 |] ; | - | x | Н | Ĺ | L | L | L | L | L | L | L | н | н | | Parallel load | 1: | - | Î | X | Н | н | н | н | н | H | Н | н | L | Н | | | 1: | - | H | X | н | Н | н |] н | Н | н | Н | Н | н | Н | | 0 | + - | H | `` | Н | X | X | х | Х | | Cou | nt up | | H(c) | Н | | Count up | - | ↓ '' | ' - | | | + | + | | _ | Cour | t down | | Н | H(d) | | Count down | L | Н | Н | 1 | × | × | × | X | <u> </u> | Court | COOMII | | <u> </u> | | H = High voltage level #### NOTES: c. $TC_U = CP_U$ at terminal count up (HHHH) d. $TC_D = CP_D$ at terminal count down (LLLL) ⁼ Low voltage level ⁼ Don't care ⁼ Low-to-High clock transition 54193, 54LS193 # 查询"54193/BFA"供应商 # ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.) | SYMBOL | PARAMETER | 54 | 54LS | UNIT | |------------------|--|--------------------------|--------------------------|------| | V _{CC} | Supply voltage | 7.0 | 7.0 | V | | Vı | Input voltage range | -0.5 to +5.5 | -0.5 to +7.0 | V | | l ₁ | input current range | -30 to +5 | -30 to +1 | mA | | Vo | Voltage applied to output in High output state range | -0.5 to +V _{CC} | -0.5 to +V _{CC} | v | | T _{STG} | Storage temperature range | -65 to | | °C | ## RECOMMENDED OPERATING CONDITIONS | SYMBOL | PARAMETER | | , | UNIT | | | | | |-----------------|--------------------------------------|-----|---------|------|-----|--|------|----| | | | Min | Nom | Max | Min | Nom | Max | | | Vcc | Supply voltage | 4.5 | 5.0 | 5.5 | 4.5 | 5.0 | 5.5 | V | | VIH | High-level input voltage | 2.0 | | | 2.0 | 1 | | V | | V _{IL} | Low-level input voltage | | | +0.8 | | † | +0.7 | v | | l _{IK} | Input clamp current | | | -12 | | | -18 | mA | | loн | High-level output current | | | -800 | | | -400 | μА | | l _{OL} | Low-level output current | | | 16 | | | 4 | mA | | TA | Operating free-air temperature range | -55 | | +125 | -55 | | +125 | °C | # DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.) | SYMBOL | PARAMETER | TEST CONDITIO | NS ¹ | | 54193 | } | | 54LS19 | 3 | UNIT | |------------------|---|--|----------------------------|-----|------------------|------|--|------------------|------|------| | | | | | Min | Typ ² | Max | Min | Typ ² | Max | | | V _{OH} | High-level output voltage | V _{CC} = Min, V _{IH} = Min, V _{IL} = I | Max, I _{OH} = Max | 2.4 | 3.4 | | 2.5 | 3.4 | | V | | VOL | Low-level output voltage | V _{CC} = Min, V _{IH} = Min, V _{IL} = Max, I _{OL} = Max | | | 0.2 | 0.4 | | 0.25 | 0.4 | v | | V _{IK} | Input clamp voltage | V _{CC} = Min, I _I = | | | _ | -1.5 | | | -1.5 | · | | · · | Input current at maximum | V _{CC} = Max | V _I = 5.5V | | | 1.0 | | | | mA | | | input voltage | | $V_1 = 7.0V$ | | | | | | 0.1 | mA | | l _{IH1} | High-level input current | <u> </u> | V _I = 2.4V | | | 40 | | | | μA | | | | | $V_1 = 2.7V$ | | | | | | 20 | Αu | | l _{IL} | Low-level input current | V _{CC} = Max, V _I = 0 | D.4V | | | -1.6 | | | -0.4 | mA | | los | Short-circuit output current ³ | V _{CC} = Max | | -20 | - | -65 | -20 | | -100 | mA | | lcc | Supply current4 (total) | V _{CC} = Max | | | 65 | 89 | <u> </u> | 19 | 34 | mA | # AC ELECTRICAL CHARACTERISTICS TA = 25°C, V_{CC} = 5.0V⁵ | SYMBOL | PARAMETER | TEST CONDITIONS | | 54 | 54 | UNIT | | |------------------------------------|---|-----------------|-----------------------|----------|------------------|----------|----------| | | 1 | 1 | C _L = 15pF | | C _L = | 1 | | | | | | Min | Max | Min | Max | 1 | | f _{MAX} | Maximum input count frequency | Waveform 1 | 25 | | 25 | | MHz | | ф _{СН}
Фнс | Propagation delay CP _U input to TC _U output | Waveform 2 | | 26
24 | | 26
24 | ns
ns | | Ф LН
Ф HL | Propagation delay CP _D input to TC _D output | Waveform 2 | | 24
24 | | 24
24 | ns
ns | | ън
рнг | Propagation delay
CP _U or CP _D to Q _n outputs | Waveform 1 | | 38
47 | | 38
47 | ns
ns | | ф _{LH}
ф _{HL} | Propagation delay
PC input to Q _n output | Waveform 3 | | 40
40 | | 40
40 | ns
ns | | t _{PHL} | Propagation delay
MR to output | Waveform 4 | | 35 | | 35 | ns | February 20, 1990 54193, 54LS193 查询"54193/BFA"供应商 ## AC SETUP REQUIREMENTS T_A = 25°C, V_{CC} = 5.0V | SYMBOL | PARAMETER | TEST CONDITIONS | 5 | 4 | 54 | UNIT | | |------------------|-----------------------------|-----------------|-----|----------|-----|---------|----| | 01111000 | | | Min | Max | Min | Max | | | t _w | CP _U pulse width | Waveform 1 | 20 | | 20 | | ns | | tw | CP _D pulse width | Waveform 1 | 20 | | 20 | | ns | | tw | PE pulse width | Waveform 3 | 20 | | 20 | | ns | | tw | MR pulse width | Waveform 4 | 20 | | 20 | | ns | | <u></u> | Setup time, data to PL | Waveform 5 | 20 | | 20 | | ns | | t _h | Hold time, data to PL | Waveform 5 | 0 | | 5 | <u></u> | ns | | t _{rec} | Recovery time, PL to CP | Waveform 3 | 40 | | 40 | | ns | | trec | Recovery time, MR to CP | Waveform 4 | 40 | | 40 | | ns | ## AC ELECTRICAL CHARACTERISTICS TA = 25°C, VCC = 5.0V | SYMBOL | PARAMETER | TEST CONDITIONS | 5 | 4 | 54 | LS | UNIT | | |------------------|---|-----------------|-----------------------|----------|------------------|----------|----------|--| | · · · · · · | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | C _L = 50pF | | C _L = |] | | | | | | | Min | Max | Min | Max | | | | f _{MAX} | Maximum input count frequency | Waveform 1 | 25 | | 25 | | MHz | | | teun
tenu | Propagation delay CPU input to TCU output | Waveform 2 | | 30
28 | | 31
29 | ns
ns | | | tpi.H
tpHL | Propagation delay CPD input to TCD output | Waveform 2 | | 28
28 | | 29
29 | ns
ns | | | telh
tehl | Propagation delay
CP _U or CP _D to Q _n outputs | Waveform 1 | | 42
51 | | 43
52 | ns
ns | | | teun
tenu | Propagation delay PL input to Q _n output | Waveform 3 | | 44
44 | | 45
45 | ns
ns | | | t PHL | Propagation delay MR to output | Waveform 4 | | 39 | | 40 | ns | | ### AC ELECTRICAL CHARACTERISTICS T_A = -55°C and +125°C, V_{CC} = 5.0V⁵ | SYMBOL | PARAMETER | TEST CONDITIONS | | i4 | 54 | LS | UNIT | | |--------------------------------------|--|-----------------|------|----------|------------------|----------|----------|--| | | | 1 | CL = | 50pF | C _L = |] | | | | | | | Min | Max | Min | Max | | | | f _{MAX} | Maximum input count frequency | Waveform 1 | 25 | | 25 | | MHz | | | t _{PLH}
t _{PHL} | Propagation delay
CP _U input to TC _U output | Waveform 2 | | 39
36 | | 40
38 | ns
ns | | | фи
фиц | Propagation delay CP _D input to TC _D output | Waveform 2 | | 36
36 | | 38
38 | ns
ns | | | t _{PLH}
t _{PHL} | Propagation delay CP _U or CP _D to Q _n outputs | Waveform 1 | | 55
66 | | 56
68 | ns
ns | | | t _{PLH}
t _{PHL} | Propagation delay
PL input to Q _n output | Waveform 3 | | 57
57 | | 59
59 | ns
ns | | | t PHL | Propagation delay,
MR to output | Waveform 4 | | 51 | | 52 | ns | | 54193, 54LS193 # 查询"54193/BFA"供应商 # AC SETUP REQUIREQUENTS $T_A = -55$ °C and +125°C, $V_{CC} = 5.0V^5$ | SYMBOL | PARAMETER | TEST CONDITIONS | | i4 | 54 | UNIT | | | |------------------|-----------------------------|-----------------|----------|-----|-----|--------------|-----|---| | | | | <u>i</u> | Min | Max | Min | Max | 1 | | tw | CP _U pulse width | Waveform 1 | 26 | | 20 | | ns | | | tw | CP _D pulse width | Waveform 1 | 26 | | 20 | | ns | | | tw | PI pulse width | Waveform 3 | 20 | | 20 | | ns | | | tw | MR pulse width | Waveform 4 | 20 | | 20 | | ns | | | t _s | Setup time, data to PC | Waveform 5 | 20 | | 30 | | ns | | | t _h | Hold time, data to PE | Waveform 5 | 0 | | 10 | | ns | | | t _{rec} | Recovery time, PL to CP | Waveform 3 | 40 | t | 40 | | ns | | | trec | Recovery time, MR to CP | Waveform 4 | 40 | | 40 | | ns | | ^{1.} For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table operating mode. 2. All typical values are at V_{CC} = 5V, T_A = 25°C. 3. Not more than one output should be shorted at a time, and duration of the short should not exceed one second. Measure I_{CC} with Parallel Load and Master Reset inputs grounded, all other outputs ≥4.0V and all outputs open. These parameters are guaranteed, but not tested. Counters 54193, 54LS193 # 查询"54193/BFA"供应商 Counters 54193, 54LS193 # 查询"54193/BFA"供应商 ### **TEST CIRCUIT AND WAVEFORM** #### **DEFINITIONS:** Load capacitance includes jig and probe capacitance; see AC Characteristics for value. Termination resistance should be equal to Z_{OUT} of Pulse Generators. Diodes are 1N916, 1N3064, or equivalent. Unclocked pins must be held at ≤0.8V, ≥2.7V or open per FunctionTable. ### **APPLICATION DIAGRAM**