

October 1988 Revised March 1999

74F2244

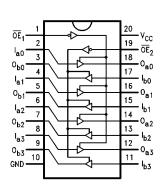
Octal Buffer/Line Driver with 25 Ω Series Resistors in Outputs

General Description

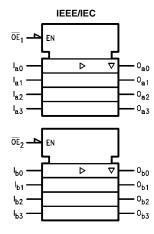
The F2244 is an octal buffer/line driver designed to drive the capacitive inputs of MOS memory drivers, address drivers, clock drivers and bus-oriented transmitters/receivers.

The 25Ω series resistors in the outputs reduce ringing and eliminate the need for external resistors.

Features


- 3-STATE outputs drive bus lines or buffer memory address registers
- 12 mA source current
- \blacksquare 25 $\!\Omega$ series resistors in outputs eliminate the need for external resistors.
- Designed to drive the capacitive inputs of MOS devices
- Guaranteed 4000V minimum ESD protection

Ordering Code:


Order Number	Package Number	Package Description
74F2244SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
74F2244MSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide
74F2244PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Logic Symbol

Unit Loading/Fan Out

Pin Names	Description	U.L.	Input I _{IH} /I _{IL}		
	Description	HIGH/LOW	Output I _{OH} /I _{OL}		
\overline{OE}_1 , \overline{OE}_2	3-STATE Output Enable Input (Active LOW)	1.0/1.667	20 μA/–1 mA		
OE ₂	3-STATE Output Enable Input (Active HIGH)	1.0/1.667	20 μA/–1 mA		
I _{an} , I _{bn}	Inputs	1.0/2.667 (Note 1)	20 μA/–1.6 mA		
O _{an} ,O _{bn}	Outputs	750/20	–15 mA/12 mA		

Note 1: Worst-case F2244 disabled

Truth Table

OE ₁	I _{an}	O _{an}	OE ₂	I _{bn}	O _{bn}	
Н	Х	Z	Н	Х	Z	
L	Н	Н	L	Н	Н	
L	L	L	L	L	L	

H = HIGH Voltage Level
L = LOW Voltage Level
X = Immaterial
Z = High Impedance

Absolute Maximum Ratings(Note 2)

 $\begin{array}{ll} \mbox{Storage Temperature} & -65\mbox{°C to } +150\mbox{°C} \\ \mbox{Ambient Temperature under Bias} & -55\mbox{°C to } +125\mbox{°C} \\ \end{array}$

Junction Temperature under Bias -55°C to +150°C V_{CC} Pin Potential to Ground Pin -0.5V to +7.0V

 $\begin{array}{cc} \text{Input Voltage (Note 3)} & -0.5 \text{V to } +7.0 \text{V} \\ \text{Input Current (Note 3)} & -30 \text{ mA to } +5.0 \text{ mA} \end{array}$

Voltage Applied to Output in HIGH State (with $V_{CC} = 0V$)

 $\begin{array}{ll} \mbox{Standard Output} & -0.5\mbox{V to V}_{\mbox{CC}} \\ \mbox{3-STATE Output} & -0.5\mbox{V to +5.5V} \end{array}$

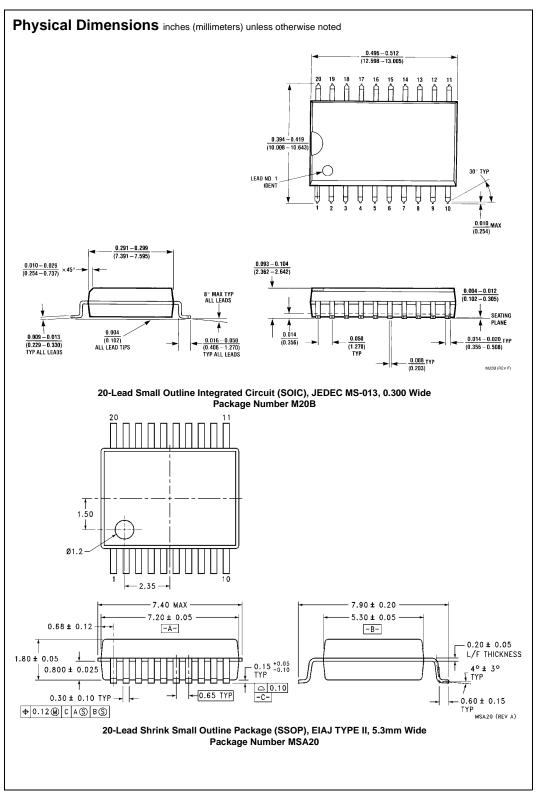
Current Applied to Output

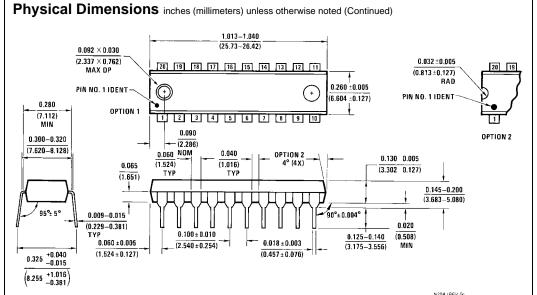
in LOW State (Max) twice the rated I_{OL} (mA) ESD Last Passing Voltage (Min) 4000V

Recommended Operating Conditions

Free Air Ambient Temperature 0° C to $+70^{\circ}$ C Supply Voltage +4.5V to +5.5V

Note 2: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.


Note 3: Either voltage limit or current limit is sufficient to protect inputs.


DC Electrical Characteristics

Symbol	Parameter		Min	Тур	Max	Units	v _{cc}	Conditions
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
V _{IL}	Input LOW Voltage				8.0	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH Voltage 1	0% V _{CC}	2.4			V	Min	$I_{OH} = -3 \text{ mA}$
	1	0% V _{CC}	2.0					$I_{OH} = -15 \text{ mA}$
	5	% V _{CC}	2.7					$I_{OH} = -3 \text{ mA}$
V _{OL}	Output LOW Voltage				0.50	V	Min	I _{OL} = 1 mA
					0.75			$I_{OL} = 12 \text{ mA}$
I _{IH}	Input HIGH Current				5.0	μА	Max	V _{IN} = 2.7V
I _{BVI}	Input HIGH Current Breakdown	Test			7.0	μА	Max	$V_{IN} = 7.0V$
I _{CEX}	Output HIGH Leakage Current				50	μА	Max	$V_{OUT} = V_{CC}$
V _{ID}	Input Leakage		4.75			V	0.0	$I_{ID} = 1.9 \mu A$
	Test							All other pins grounded
I _{OD}	Output Leakage				3.75	μА	0.0	V _{IOD} = 150 mV
	Circuit Current							All other pins grounded
I _{IL}	Input LOW Current				-1.0	mA	Max	$V_{IN} = 0.5V (\overline{OE}_1, \overline{OE}_2, OE_2)$
					-1.6			$V_{IN} = 0.5V (I_n)$
I _{OZH}	Output Leakage Current				50	μА	Max	V _{OUT} = 2.7V
I _{OZL}	Output Leakage Current				-50	μА	Max	V _{OUT} = 0.5V
Ios	Output Short-Circuit Current		-100		-225	mA	Max	V _{OUT} = 0V
I _{CCH}	Power Supply Current			40	60	mA	Max	V _O = HIGH
I _{CCL}	Power Supply Current			60	90	mA	Max	$V_O = LOW$
I _{CCZ}	Power Supply Current			60	90	mA	Max	V _O = HIGH Z

AC Electrical Characteristics

Symbol	Parameter	$\begin{aligned} T_{A} &= +25^{\circ}\text{C} \\ V_{CC} &= +5.0\text{V} \\ C_{L} &= 50 \text{ pF} \end{aligned}$			$T_A = -55^{\circ}\text{C to } +125^{\circ}\text{C}$ $C_L = 50 \text{ pF}$		$T_A = 0$ °C to +70°C $C_L = 50$ pF		Units
		Min	Тур	Max	Min	Max	Min	Max	
t _{PLH}	Propagation Delay	1.5		7.0	2.0	6.5	1.5	7.0	ns
t _{PHL}	Data to Output	2.5		8.0	2.0	7.0	2.0	8.0	
t _{PZH}	Output Enable Time	1.5		9.0	2.0	7.0	1.0	9.5	
t_{PZL}		2.5		11.5	2.0	8.5	2.5	12.0	ns
t _{PHZ}	Output Disable Time	1.5		9.0	2.0	7.0	1.0	9.5	
t_{PLZ}		1.5		8.5	2.0	7.5	1.5	9.5	

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N20A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com