

www.ti.com

SWCS048C - MARCH 2010 - REVISED OCTOBER 2010

Power Management and USB Single Chip

Check for Samples: TPS65921

FEATURES

- 3 Step-Down Converters:
 - Up to 1.2 A of output current for DCDC1
 - TPS65921B supports DCDC1 up to 1.2 A
 - TPS65921B1 will support DCDC1 up to 1.4 A
 - SmartReflex™ dynamic voltage management
 - 3.2 MHz fixed frequency operation
 - V_{IN} range from 2.7 to 4.5 V
 - Typical 30 µA quiescent per converter
 - 4 general-purpose configurable LDOs:
 - Dynamic voltage scaling
 - 220 mA maximum current for one LDO
 - V_{IN} range from 2.7 to 4.5 V
 - 2 LDOs with low noise and high PSRR
- Backup battery charger
- RTC with alarm wake up mechanism
- 2.25 µA maximum in backup mode
- Clock management
 - 32-kHz crystal oscillator
 - Clock slicer for 26, 19.2, and 38.4 MHz
 - HF clock output buffer
 - Internal 32-kHz RC oscillator (start-up time)
- USB:
 - USB HS 2.0 transceiver
 - USB 1.3 OTG-compliant
 - 12-bit ULPI 1.1 interface
 - USB power supply (5-V CP for VBUS)
- Control
 - High-speed I²C[™] interface
 - All resource configurable by I²C
- Keypad interface up to 8 × 8
- 10-bit A/D converter

- Hot-die, thermal shutdown protection
- µ*BGA 120 balls ZQZ

APPLICATIONS

- Mobile phones and smart phones
- MP3 players
- Handheld devices
- E-Books
- OMAP[™] and low power DSP supply

DESCRIPTION

The TPS65921 device is a highly integrated power-management circuit (IC) that supports the power and peripheral requirements of the OMAP application processors. The device contains power management, a universal serial bus (USB) high-speed (HS) transceiver, an analog-to-digital converter (ADC), a real-time clock (RTC), a keypad interface, and an embedded power control (EPC). The power portion of the device contains three buck converters, two controllable by a dedicated SmartReflex[™] class-3 interface, multiple low-dropout regulators, an EPC to manage (LDO) the power-sequencing requirements of OMAP, and an RTC and backup module. The RTC can be powered by a backup battery when the main supply is not present. Backup battery can be charged from the main battery. The USB module provides a HS 2.0 transceiver suitable for direct connection to the OMAP universal transceiver macrocell interface (UTMI) + low pin interface (ULPI) with an integrated charge pump (CP).

The device also provides auxiliary modules: ADC, keypad interface, and general-purpose inputs/outputs (GPIOs) muxed with the JTAG functions. The keypad interface implements a built-in scanning algorithm to decode hardware-based key presses and to reduce software use, with multiple additional GPIOs that can be used as interrupts when they are configured as inputs.

f.dzsc.com

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SWEANS CTOBER 2010

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	NOM	MAX	UNIT
Main battery supply voltage ⁽²⁾		0.0		5.0	V
Voltage on any input ⁽³⁾	Where supply represents the voltage applied to the power supply pin associated with the input ⁽⁴⁾	-0.3		1.0 × Supply + 0.3	V
VBUS input		-0.3		7	V
Storage temperature range		-55		125	°C
Operating ambient temperature (T _A)		-40		85	°C
Operating junction temperature (T_J)	Absolute maximum rating	-40		125	°C
Operating junction temperature (T_J)	For parametric compliance	-40		150	°C
Ambient temperature for parametric compliance	With maximum 125°C as junction temperature (T _J)	-40		85	°C

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device.

(2) The product will have negligible reliability impact if voltage spikes of 5.2 V occur for a total (cumulative over lifetime) duration of 10 milliseconds.

(3) Excepts VBAT input pads and VBUS pad.

(4) Supply equals the reference level of each pin.

RECOMMENDED OPERATING CONDITIONS

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	MIN	TYP	MAX	UNIT
	Power and USB Path				
VBAT/VBAT.USB main ba	attery supply voltage and	2.7	3.6	4.5	V
BKBAT backup battery su	ipply voltage	1.8	3.2	3.3	V
VBUS		0		7	V
	HFCLKIN Input Clock				
Frequency 1/t _{C(HFCLKIN)}		1	9.2, 26 or 38	.4	MHz
Pulse duration, HFCLKIN	low or high (BP)	0.45 × t _{C(HFCLKIN)}		0.55 × t _{C(HFCLKIN)}	ns
HFCLKIN stability		-150		150	ppm
Rise time of HFCLKIN (B	P)	0		5	ns
Fall time of HFCLKIN (BF)	0		5	ns
· · · ·	LP/HP (sine wave)	0.3	0.7	1.45	Vpp
Input dynamic range	BP/PD (square wave)	0		1.85 ⁽¹⁾	Vpp
Harmonic content of input LP/HP (sine wave)	signal (with 0.7-V _{PP} amplitude): Second component -			-25	dBc
V_{IH} voltage input high ⁽¹⁾	BP (square mode)	0.65 × IO.1P8			V
V_{IL} voltage input low ⁽¹⁾	BP (square mode)			0.35 × IO.1P8	V
	Crystal Oscillator				
Parallel resonance crysta	l frequency 1/t _{C(32KHZ)}		32.768		kHz
Input voltage, Vin (norma	mode)	1.0	1.3	1.55	V
Crystal tolerance at room	temperature, 25°C	-30		30	ppm

(1) Bypass input maximum voltage is the same as the maximum voltage provided for the I/O interface (IO.1P8V).

www.ti.com

SWCS048C - MARCH 2010 - REVISED OCTOBER 2010

RECOMMENDED OPERATING CONDITIONS (continued)

over operating free-air temperature range (unless otherwise noted)

	emperature range (unless otherwise noted) mperature range (-40°C to 85°C)	-200		200	nnm
Crystal quality factor		-200 13k		200 54k	ppm
Maximum drive power		IJK		1	μW
Operating drive level				0.5	μW
32KXIN 32KXOUT	Crystal	40%		60%	μ
duty cycle	Square wave	45%		55%	
32-kHz clock rise/fall time	Square wave with capacitive load equivalent to 30 pF			0.1 × t _{C(32KHZ)}	μs
V_{IH} voltage input high	Square wave in bypass mode ⁽¹⁾	0.65 × VBRTC		·O(32KHZ)	V
V_{IL} voltage input low	Square wave in bypass mode ⁽¹⁾			0.35 × VBRTC	V
	DCDC Converters and LDO	S			
VDD1.IN, VDD2.IN, VDD3. DCDC2, DCDC3 (VIO)	IN input voltage range for step-down converter DCDC1,	2.7	3.6	4.5	V
VMMC1.IN input voltage range for LDO VMMC			3.6	4.5	V
VDAC.IN input voltage ran	ge for LDO VDAC	2.7	3.6	4.5	V
VAUX12S.IN input voltage	Maximum (2.7, output voltage selected + 250 mV)	3.6	4.5	V	
VINT.IN input voltage rang	e for LDO VINTANA1, VINTANA2, VINTDIG and VRTC	Maximum (2.7, output voltage selected + 200 mV)	3.6	4.5	V
VPLLA3R.IN input voltage	range for LDO VPLL1	2.7	3.6	4.5	V
VDD1.OUT ouput voltage	range for DCDC1 step-down converter	0.6		1.45	V
VDD2.OUT ouput voltage	range for DCDC2 step-down converter	0.6		1.5	V
VDD3.OUT ouput voltage	range for DCDC3 (VIO) step-down converter		1.8/1.85		V
VMMC1.OUT output voltage	e range for LDO VMMC	1.85		3.15	V
VDAC.OUT output voltage	range for LDO VDAC	1.2		1.8	V
VAUX2.OUT output voltage	e range for LDO VAUX	1.3		2.8	V
VPLL1.OUT output voltage	e range for LDO VPLL	1.0		1.8	V
VINTANA1.OUT output vol	tage for LDO VINTANA1		1.5		V
VINTANA2.OUT output vol	tage for LDO VINTANA2		2.5/2.75		V
VINTUSB1P5V.OUT output	t voltage for LDO VINTUSB1P5	1.35	1.5	1.65	V
VINTUSB1P8V.OUT output	t voltage for LDO VINTUSB1P8	1.62	1.8	1.98	V
VUSB3P1V.OUT output vo	ltage for LDO VUSB3P1		3.1		V
VINTDIG.OUT output volta	ge range for LDO VINTDIG	1.35	1.5	1.65	V
VRTC.OUT output voltage	Normal mode	1.45	1.5	1.55	V
range	Backup mode	1.0	1.3	1.55	V
	External Components	· · ·			
Crystal: Nominal load cap	on each oscillator input CXIN and CXOUT ⁽²⁾	9	10	12.5	pF

(2) Nominal load capacitor on each oscillator input defined as CXIN = CXOUT = Cosc × 2 - (Cint + Cpin). Cosc is the load capacitor defined in the crystal oscillator specification, Cint is the internal capacitor, and Cpin is the parallel input capacitor.

SWERTHORSEN 2010 REVIEW DOCTOBER 2010

RECOMMENDED OPERATING CONDITIONS (continued)

over operating free-air temperature range (unless otherwise noted)

Crystal ESR ⁽³⁾	mperature range (unless otherwise noted)			90	kΩ
Crystal shunt capacitance, C _O				1	pF
	Value	0.7	1	1.3	μH
External coil for DCDC1	DCR			0.1	Ω
	Saturation current	1.8			А
	Value	0.7	1	1.3	μH
External coil for DCDC2 and DCDC3	DCR			0.1	Ω
	Saturation current	900			mA
External capacitor for	Value	5	10	15	μF
DCDC1, DCDC2, DCDC3 connected to VDD1.IN, VDD2.IN, VDD3.IN, and VDD1.OUT, VDD2.OUT, VDD3.OUT	ESR at switching frequency	1		20	mΩ
Filtering capacitor for	Value	0.3	1	2.7	μF
VMCC1.IN, VDAC.IN, VAUX.IN, VPPLA3R.IN, VINT.IN, VBAT.USB, VMMC1.OUT, VDAC.OUT, VAUX2, VPPL1, VINTDIG, VINTANA1, VINTANA2, VRRTC	ESR	20		600	mΩ
Filtering capacitor for	Value	1.41	4.7	6.5	μF
VUSB3V1, VUSB1V8, VUSB1V5	ESR	20		600	mΩ
Filtering capacitor for voltage reference	Connected from V _{REF} to REFGND	0.3	1	2.7	μF
	Filtering capacitor (Connected between VBUS.CPOUT and GND) and called CVBUS (See Figure in USB Chapter)	1.41 (The minimum can be reduced to 1.2 μF, provided the charge- pump is only used to supply VUSB3V1 LDO)	4.7	6.5	μF
External capacitor for charge pump and VBUS	Flying capacitor (Connected between CP.CAPP and CP.CAPM) called CVBUS.FC (See Figure in USB Chapter)	1.32 (The minimum can be reduced to 1.2 μF, provided the charge- pump is only used to supply VUSB3V1 LDO)	2.2	3.08	μF
	Filtering capacitor ESR for CVUSB.IN and CVBUS.FC	,		20	mΩ
	Filtering capacitor CVBUS.IN	5	10	15	μF

(3) The crystal motional resistance Rm relates to the equivalent series resistance (ESR) by the following formula:

$$ESR = R_m \left(1 + \frac{C_0}{C_L} \right)^2$$

Measured with the load capacitance specified by the crystal manufacturer. In fact, if CXIN = CXOUT = 10 pF, then CL = 5 pF. Parasitic capacitance from the package and board must also be considered.

<u>₩豐簡¶PS65921"供应商</u>

SWCS048C - MARCH 2010 - REVISED OCTOBER 2010

RECOMMENDED OPERATING CONDITIONS (continued)

over operating free-air temperature range (unless otherwise noted)

External capacitor for power reference filter Filtering capacitor	0.3	1	2.7	μF	
--	-----	---	-----	----	--

ELECTRICAL CHARACTERISTICS

CRYSTAL OSCILLATOR

When selecting a crystal, the system designer must consider the temperature and aging characteristics of a crystal versus the user environment and expected lifetime of the system. The following table lists the switching characteristics of the oscillator.

		-					
	PARAMETER		MIN	TYP	MAX	UNIT	
Crystal: Internal capacitor on each input (Cint)		8	10	12	pF		
Crystal: Parallel in	put capacitance (Cpin)				1.0	pF	
Parallel resonance	e crystal frequency			32.768		kHz	
Pin-to-pin capacita	ance			1.6	1.8	pF	
Maximum drive power					1.0	μW	
Operating drive level					0.5	μW	
Crystal quality fact	tor		13k		54k		
4	Start-up time, all conditions	S			500		
t _{SX}	Start-up time, 25°C				360	ms	
	Active current	High jitter mode			1.8		
I _{DDA} consumption (configured through the LOJIT bit) Low jitter mode				0.8	μA		
		Low battery mode (1.2 V)			1	۵	
IDDQ	Current consumption	Startup			8	μA	

Table 1. Base Oscillator Switching Characteristics

CLOCK SLICER

PARAMETER	MODE ⁽¹⁾	MIN	ТҮР	MAX	UNIT
Internal coupling capacitor		4.2	5	5.7	pF
	LP	15		60	kΩ
Parallel input resistance over 10 to 40 MHz range	HP	30		75	kΩ
	BP/PD	1		100	MΩ
	LP	0.3		0.8	
	HP	0.3		0.7	
Parallel input capacitance over 10 to 40 MHz range	BP/PD	0.08		1	pF
	BP/PD	40		230	
Output duty cycle with $V_{IN} = 0.2 V_{PP}$	LP/HP	40%	50%	60%	
	LP	4		18	
Propagation delay	HP	3		15	ns
	BP/PD	0.2		3	
Power supply rejection ratio sideband (1% RMS of supply voltage added sine 5 MHz)	LP/HP	26			dBc
	LP			175	μA
Current consumption at maximum input of 40 MHz	HP			235	μA
	BP/PD			39	nA
Power-up time	LP/HP			1	ms

(1) Bypass input maximum voltage is the same as the maximum voltage provided for the I/O interface.

Copyright © 2010, Texas Instruments Incorporated

SWES9448G-MARCH 2010HREVISED OCTOBER 2010

www.ti.com

PARAMETER	MODE ⁽¹⁾	MIN	TYP	MAX	UNIT
Output peak-to-peak jitter with an input peak-to-peak jitter < 0.1% and for jitter frequency below 300 kHz	LP/HP			0.2%	
Output peak-to-peak jitter with an input peak-to-peak jitter < 0.1% and for jitter frequency above 300 kHz	LP/HP			1.0%	

32KCLKOUT OUTPUT CLOCK

NAME	PARAMETER DESCRIPTION	MIN	ТҮР	MAX	UNIT
f	Frequency		32.768		kHz
CL	Load capacitance			40	pF
V _{OUT}	Output clock voltage, depending on output reference level IO.1P8		1.8 ⁽¹⁾		V
V _{OH}	Voltage output high	V _{OUT} – 0.45		V _{OUT}	V
V _{OL}	Voltage output low	0		0.45	V

(1) The output voltage depends on output reference level which is IO.1P8.

The following table details the output clock timing characteristics. The following figure shows the 32KCLKOUT output clock waveform.

NAME	PARAMETER	DESCRIPTION	MIN	TYP	MAX	UNIT
CK0	1/t _{C(32KCLKOUT)}	Frequency		32.768		kHz
CK1	t _{W(32KCLKOUT)}	Pulse duration, 32KCLKOUT low or high	0.40 × t _{C(32KCLKOUT)}		0.60 × t _{C(32KCLKOUT)}	ns
CK2	t _{R(32KCLKOUT)}	Rise time, 32KCLKOUT ⁽¹⁾			16	ns
CK3	t _{F(32KCLKOUT)}	Fall time, 32KCLKOUT ⁽¹⁾			16	ns
	SSB Phase Noise	At 1-kHz offset from the carrier			-110	dBc/Hz

(1) The output capacitive load is equivalent to 30 pF.

HFCLKOUT OUTPUT CLOCK

The following table summarizes the HFCLKOUT output clock electrical characteristics.

Table 2. HFCLKOUT Output Clock Electrical Characteristics

NAME	PARAMETER DESCRIPTION	MIN	ТҮР	MAX	UNIT
f	Frequency		19.2, 26, or 38.4		MHz
CL	Load capacitance			30	pF
V _{OUT}	Output clock voltage, depending on output reference level IO.1P8		1.8 ⁽¹⁾		V
V _{OH}	Voltage output high	V _{OUT} – 0.45		V _{OUT}	V
V _{OL}	Voltage output low	0		0.45	V

(1) The output voltage depends on output reference level which is IO.1P8.

SWCS048C-MARCH 2010-REVISED OCTOBER 2010

<u>₩豐樹♥₽865921"供应商</u>

The following table details the HFCLKOUT output clock timing characteristics.

NAME	PARAMETER	DESCRIPTION	MIN	TYP	MAX	UNIT
CHO1	1/t _{C(HFCLKOUT)}	Frequency		19.2, 26, or 38.4		MHz
CHO2	t _{W(HFCLKOUT)}	Pulse duration, HFCLKOUT low or high	0.4 × t _{C(HFCLKOUT)}		0.6 × t _{C(HFCLKOUT)}	ns
		Rise time, HFCLKOUT, low drive ⁽¹⁾				
		- Load: 5 pF			3.8	
CHO3		- Load: 10 pF			5.5	20
CHO3	t _{R(HFCLKOUT)}	Rise time, HFCLKOUT, high drive ⁽¹⁾				ns
		- Load: 10 pF			2.9	
		- Load: 20 pF			5.0	
		Fall time, HFCLKOUT, low drive ⁽¹⁾				
		- Load: 5 pF			3.5	
CHO4		- Load: 10 pF			5.1	20
CHU4	^t F(HFCLKOUT)	Fall time, HFCLKOUT, high drive ⁽¹⁾				ns
		- Load: 10 pF			2.7	
		- Load: 20 pF			4.7	

Table 3. HFCLKOUT Output Clock Switching Characteristics

(1) Low drive: MISC_CFG[CLK_HF_DRV] = 0 (default) High drive: MISC_CFG[CLK_HF_DRV] = 1

Figure 2 shows the HFCLKOUT output clock waveform.

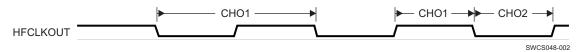
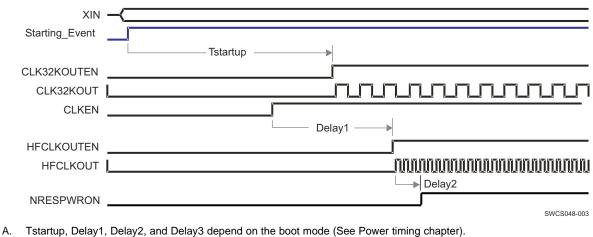



Figure 3 shows the 32KCLKOUT and HFCLKOUT clock stabilization time.

Figure 3. 32KCLKOUT and HFCLKOUT Clock Stabilization Time

FXAS STRUMENTS

SWESHBELTWOREH 2010HREHSED OCTOBER 2010

www.ti.com

HFCLKOUT

SWCS048-004

Figure 4. HFCLKOUT Behavior

DCDC1 CONVERTER

PARAMETER	COMMENTS	MIN	ТҮР	MAX	UNIT
Input voltage range		2.7	3.6	4.5	V
Output voltage		0.6		1.45	V
Output voltage step	0.6 to 1.45 V		12.5		mV
Output accuracy ⁽¹⁾	0.6 to < 0.8 V	-6%		6%	
	0.8 to 1.45 V	-5%		5%	-
Switching frequency ⁽²⁾			3.2		MHz
	I _O = 10 mA, sleep		82%		
a (3)	100 mA < I _O < 400 mA		85%		
Conversion efficiency ⁽³⁾	400 mA < I _O < 600 mA		80%		-
	600 mA < I _O < 800 mA		75%		-
0.1	Active mode			1.2	А
Output current	Sleep mode			10	mA
Ground current (I _Q)	Off at 30°C			3	
	Sleep, unloaded		30	50	μA
	Active, unloaded, not switching			300	-
Short-circuit current	$V_{IN} = V_{MAX}$		2.2		А
Load regulation	$0 < I_O < I_{MAX}$			20	mV
Transient load regulation ⁽⁴⁾	$I_O = 10 \mbox{ mA to } (I_{MAX}/3) + 10 \mbox{ mA,} maximum slew rate is I_{MAX}/3/100 \mbox{ ns}$	-65		50	mV
Line regulation				10	mV
Transient line regulation	300 mV_{PP} ac input, 10- μs rise and fall time			10	mV
Start-up time			0.25	1	ms
Recovery time	From sleep to on with constant load		< 10	100	μs
Slew rate (rising or falling) ⁽⁵⁾		4	8	16	mV/µs
o <i>i i i i</i>	Active (PWM and PSM)	-10		10	mV
Output ripple	Sleep (PFM)	-2%	1	2%	
Current limit for PWM/PSM mode switch. PSM is below this limit, and PWM is above this limit.	Active mode	150		200	mA

Accuracy includes all variations (line and load regulations, line and load transients, temperature, and process). (1)

(2)Two modes are available:

Mode 1: VDD1 switcher uses its own RC oscillator clock (default).

Mode 2: VDD1 switcher could be configured to use delayed clock from VIO clock (based on HFCLKIN input clock).

- (3)
- VBAT = 3.8 V, VDD1 = 1.3 V, Fs = 3.2 MHz, L = 1 μ H, L_{DCR} = 100 m Ω , C = 10 μ F, ESR = 10 m Ω Output voltage must be able to discharge the load current completely and settle to its final value within 100 μ s. (4)

Load current varies proportional to the output voltage. The slew rate is for increasing and decreasing voltages and the load current is 1.1 (5)

Α.

TPS65921

SWCS048C - MARCH 2010 - REVISED OCTOBER 2010

www.排\$0mDccc001"/开示去

PARAMETER	COMMENTS	MIN	TYP	MAX	UNIT				
Overshoot	Softstart			5%					
Output pulldown resistance	In Off mode		500	700	Ω				

DCDC2 CONVERTER

PARAMETER	COMMENTS	MIN	ТҮР	MAX	UNIT
Input voltage range		2.7	3.6	4.5	V
Output voltage		0.6	1.0	1.5	V
Output voltage step	0.6 to 1.45 V		12.5		mV
Output accuracy ⁽¹⁾	0.6 to < 0.8 V	-6%		6%	
	0.8 to 1.45 V	-5%		5%	
Switching frequency ⁽²⁾			3.2		MHz
	$I_{O} = 10 \text{ mA}, \text{sleep}$		82%		
Conversion efficiency ⁽³⁾	100 mA < I _O < 300 mA		85%		
	300 mA < I _O < 500 mA		80%		
Outrast annual	Active mode			600	mA
Output current	Sleep mode			10	mA
	Off at 30°C			1	
Ground current (I _Q)	Sleep, unloaded		30	50	μA
	Active, unloaded, not switching			300	
Short-circuit current	$V_{IN} = V_{MAX}$		1.2		А
Load regulation	$0 < I_O < I_{MAX}$			20	mV
Transient load regulation ⁽⁴⁾	I_O = 10 mA to (I_{MAX}/3) + 10 mA, maximum slew rate is I_{MAX}/3/100 ns	-65		50	mV
Line regulation				10	mV
Transient line regulation	300 mV_{PP} ac input, 10- μ s rise and fall time			10	mV
Output pulldown resistance	In OFF mode		500	700	Ω
Start-up time			0.25	1	ms
Recovery time	From sleep to on with constant load		25	100	μs
Slew rate (rising or falling) ⁽⁵⁾		4	8	16	mV/µs
Output ripple	Active (PWM and PSM)	-10		10	mV
Output ripple	Sleep (PFM)	-2%		2%	
Current limit for PWM/PSM mode switch. PSM is below this limit, and PWM is above this limit.	Active mode	150		200	mA
Overshoot	Softstart			5%	

(1) Accuracy includes all variations (line and load regulations, line and load transients, temperature, and process).

(2) Two modes are available:

Mode 1: VDD1 switcher uses its own RC oscillator clock (default).

Mode 2: VDD1 switcher could be configured to use delayed clock from VIO clock (based on HFCLKIN input clock). VBAT = 3.8 V, VDD1 = 1.3 V, Fs = 3.2 MHz, L = 1 μ H, L_{DCR} = 100 m Ω , C = 10 μ F, ESR = 10 m Ω

(3)

Output voltage must be able to discharge the load current completely and settle to its final value within 100 μ s.

(4) (5) Load current varies proportional to the output voltage. The slew rate is for increasing and decreasing voltages and the load current is 1.1 Α.

DCDC3 CONVERTER (VIO)

PARAMETER	COMMENTS	MIN	ТҮР	MAX	UNIT
Input voltage range		2.7	3.6	4.5	V

TPS65921

SWESPHER CT MARCH 2010HREVISED OCTOBER 2010

www.ti.com

PARAMETER	COMMENTS	MIN	ТҮР	MAX	UNIT
Output voltage ⁽¹⁾			1.8 1.85		V
	DC accuracy only	-3%		3%	
Output accuracy	Including all variations (line and load regulations, line and load transients, temperature, and process)	-4%		4%	
Switching frequency ⁽²⁾			3.2		MHz
	I _O = 10 mA, sleep		85%		
Conversion efficiency ⁽³⁾	100 mA < I _O < 400 mA		85%		
	400 mA < I _O < 600 mA		80%		-
	On mode			700	mA
Output current	Sleep mode			10	mA
	Off at 30°C			1	
Ground current (I _Q)	Sleep, unloaded		30	50	μA
	Active, unloaded, not switching			300	-
Load regulation	$0 < I_O < I_{MAX}$			20	mV
Line regulation				10	mV
Transient load regulation	I_O = 10 mA to ($I_{MAX}/3)$ + 10 mA, maximum slew rate is $I_{MAX}/3/100$ ns	-65		50	mV
Transient line regulation	300 mV_{PP} ac input, 10- μs rise and fall time			10	mV
Start-up time			0.25	1	ms
Recovery time	From sleep to on with constant load		< 10	100	μs
Slew rate (rising or falling)		4	8	16	mV/µs
	Active (PWM and PSM)	-10		10	mV
Output ripple	Sleep (PFM)	-2%		2%	
Current limit for PWM/PSM mode switch. PSM is below this limit, and PWM is above this limit.	Active mode	150		200	mA
Overshoot	Softstart			5%	
Output pulldown resistance	In Off mode		500	700	Ω

(1) This voltage is tuned according to the platform and transient requirements. (2) Two modes are available: Mode 1: VIO switcher uses its own RC oscillator clock (default). ??? Mode 2: (3) VBAT = 3.8 V, VIO = 1.8 V, Fs = 3.2 MHz, L = 1 μ H, LDCR = 100 m Ω , C = 10 μ F, ESR = 10 m Ω

VMMC LOW DROPOUT REGULATOR

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
V _{IN}	Input voltage		2.7	3.6	5.5	V
V _{OUT}	Output voltage including all variations (line and load regulations, line and load transients, temperature, and process)		1.7945 2.7645 2.91 3.0555	1.85 2.85 3.0 3.15	1.9055 2.9355 3.09 3.2445	V
I _{OUT}	Rated output current	On mode Low-power mode			220 5	mA
	DC load regulation	On mode: $0 < I_O < I_{MAX}$			20	mV
	DC line regulation	On mode, V _{IN} = V _{INmin} to V _{INmax} at I _{OUT} = I _{OUTmax}			3	mV
	Turn-on time	I_{OUT} = 0, C_L = 1 μF (within 10% of $V_{OUT})$			100	μs

www.排命@P265021"(出应商

SWCS048C - MARCH 2010 - REVISED OCTOBER 2010

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Wake-up time	Full load capability			10	μs
		f < 10 kHz	50			
	Disale asis stics	10 kHz < f < 100 kHz	40			dB
	Ripple rejection	f = 1 MHz	25			uв
		$V_{IN} = V_{OUT} + 1 V$, $I_O = I_{MAX}$				
		On mode, I _{OUT} = 0			70	
		On mode, $I_{OUT} = I_{OUTmax}$			290	
	Ground current	Low-power mode, $I_{OUT} = 0$			17	μA
		Low-power mode, $I_{OUT} = 5$ mA			20	μ, τ
		Off mode at 55°C			1	
V _{DO}	Dropout voltage ⁽¹⁾	On mode, I _{OUT} = I _{OUTmax}			250	mV
	Transient load regulation ⁽²⁾	I _{LOAD} : I _{MIN} – I _{MAX} Slew: 40 mA/μs	-40		40	mV
	Transford the second stars	V _{IN} drops 500 mV			10	
	Transient line regulation	Slew: 40 mV/µs			10	mV
	Overshoot	Softstart			3%	
	Pulldownresistance	Default in off mode	250	320	450	Ω

(1) For nominal output voltage

(2) Transient load regulation is always included in the overall accuracy of the selected output voltage option. For voltage levels that have a tighter output voltage specification than the transient load regulation, follow the output voltage specification.

VDAC LOW DROPOUT REGULATOR

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{IN}	Input voltage		2.7	3.6	4.5	V
V _{OUT}	Output voltage including all variations (line and load regulations, line and load transients, temperature, and process)		1.164 1.261 1.746	12 1.3 1.8	1.236 1.339 1.854	v
I _{OUT}	Rated output current	On mode Low-power mode			70 5	mA
	DC load regulation	On mode: $0 < I_O < I_{MAX}$			20	mV
	DC line regulation	On mode, $V_{IN} = V_{INmin}$ to V_{INmax} at $I_{OUT} = I_{OUTmax}$			3	mV
	Turn-on time	I_{OUT} = 0, C_L = 1 μF (within 10% of $V_{OUT})$			100	μs
	Wake-up time	Full load capability			10	μs
	Ripple rejection	f < 20 kHz 20 kHz < f < 100 kHz f = 1 MHz V _{IN} = V _{OUT} + 1 V, I _O = I _{MAX}	65 45 40			dB
	Output noise	200 Hz < f < 5 kHz 5 kHz < f < 400 kHz 400 kHz < f < 10 MHz			400 125 50	nV/√Hz
		On mode, $I_{OUT} = 0$ On mode, $I_{OUT} = I_{OUTmax}$			150 350	
	Ground current	Low-power mode, I _{OUT} = 0 Low-power mode, I _{OUT} = 1 mA			15 25	μΑ
		Off mode at 55°C			1	

Copyright © 2010, Texas Instruments Incorporated

TPS65921

SWES048G-MAREH 3010HREVISED OCTOBER 2010

www.ti.com

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{DO}	Dropout voltage ⁽¹⁾	On mode, $I_{OUT} = I_{OUTmax}$			250	mV
	Transient load regulation ⁽²⁾	I _{LOAD} : I _{MIN} – I _{MAX}	-40		40	mV
	Transient load regulation	Slew: 60 mA/µs	-40		-10	111 V
	Transient line regulation	V _{IN} drops 500 mV			10	m\/
	Transient line regulation	Slew: 40 mV/µs			10	mV
	Overshoot	Softstart			3%	
	Pull down resistance	Default in off mode	250	320	450	Ω

(1) For nominal output voltage

(2) Transient load regulation is always included in the overall accuracy of the selected output voltage option. For voltage levels that have a tighter output voltage specification than the transient load regulation, follow the output voltage specification.

VAUX LOW DROPOUT REGULATOR

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{IN}	Input voltage		2.7	3.6	4.5	V
V _{OUT}	Output voltage including all variations (line and load regulations, line and load transients, temperature, and process)		-3%	1.3 1.5 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.8	+3%	V
	Rated output current	On mode			100	mA
OUT	Rated output current	Low-power mode			5	IIIA
	DC load regulation	On mode: $0 < I_O < I_{MAX}$			20	mV
	DC line regulation	On mode, $V_{IN} = V_{INmin}$ to V_{INmax} at $I_{OUT} = I_{OUTmax}$			3	mV
	Turn-on time	I_{OUT} = 0, C_L = 1 μF (within 10% of $V_{OUT})$			100	μs
	Wake-up time	Full load capability			10	μs
	Ripple rejection	f < 10 kHz 10 kHz < f < 100 kHz f = 1 MHz V _{IN} = V _{OUT} + 1 V, I _O = I _{MAX}	50 40 30			dB
	Ground current	On mode, $I_{OUT} = 0$ On mode, $I_{OUT} = I_{OUTmax}$ Low-power mode, $I_{OUT} = 0$ Low-power mode, $I_{OUT} = 5$ mA Off mode at 55°C			70 170 17 20 1	μΑ
V _{DO}	Dropout voltage ⁽¹⁾	On mode, I _{OUT} = I _{OUTmax}			250	mV
	Transient load regulation ⁽²⁾	I _{LOAD} : I _{MIN} – I _{MAX} Slew: 40 mA/μs	-40		40	mV
	Transient line regulation	V _{IN} drops 500 mV Slew: 40 mV/μs			10	mV
	Overshoot	Softstart			3%	

(1) For nominal output voltage

(2) Transient load regulation is always included in the overall accuracy of the selected output voltage option. For voltage levels that have a tighter output voltage specification than the transient load regulation, follow the output voltage specification.

TPS65921

***警节^{\$\$\$\$\$\$21**"供应商}

C-MARCH 2010-REVISED OCTOBER 2010

PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
	Default in off mode	250	320	450	Ω
Pulldown resistanc	e Configurable as HighZ in off mode	100			MΩ

VPLL LOW DROPOUT REGULATOR

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{IN}	Input voltage		2.7	3.6	4.5	V
	Output voltage including all		0.97	1.0	1.03	
,	variations (line and load		1.164	1.2	1.236	V
V _{OUT}	regulations, line and load transients, temperature, and		1.261	1.3	1.339	V
	process)		1.746	1.8	1.854	
	Rated output current	On mode			40	mA
OUT	Raled output current	Low-power mode			5	IIIA
	DC load regulation	On mode: $0 < I_O < I_{MAX}$			20	mV
	DC line regulation	On mode, $V_{IN} = V_{INmin}$ to V_{INmax} at $I_{OUT} = I_{OUTmax}$			3	mV
	Turn-on time	I_{OUT} = 0, C_L = 1 μF (within 10% of $V_{OUT})$			100	μs
	Wake-up time	Full load capability			10	μs
		f < 10 kHz	50			
	Ripple rejection	10 kHz < f < 100 kHz	40			dB
		f = 1 MHz	30			uБ
		$V_{IN} = V_{OUT} + 1 V$, $I_O = I_{MAX}$				
		On mode, I _{OUT} = 0			70	
		On mode, I _{OUT} = I _{OUTmax}			110	
	Ground current	Low-power mode, $I_{OUT} = 0$			70	μA
		Low-power mode, $I_{OUT} = 1$ mA			16	P ² 1
		Off mode at 55°C			1	
/ _{DO}	Dropout voltage ⁽¹⁾	On mode, I _{OUT} = I _{OUTmax}			250	mV
	Transient load regulation ⁽²⁾	I _{LOAD} : I _{MIN} – I _{MAX} Slew: 60 mA/μs	-40		40	mV
	The select line is what	V _{IN} drops 500 mV			10	
	Transient line regulation	Slew: 40 mV/µs			10	mV
	Overshoot	Softstart			3%	
	Pulldown resistance	Default in off mode	250	320	450	Ω

(1) For nominal output voltage

(2) Transient load regulation is always included in the overall accuracy of the selected output voltage option. For voltage levels that have a tighter output voltage specification than the transient load regulation, follow the output voltage specification.

Internal LDOs

Internal LDOs (except USBCP, which is a boost) are described in following table.

NAME	USAGE	TYPE	VOLTAGE RANGE (V)	DEFAULT VOLTAGE (V)	MAXIMUM CURRENT
VINTANA1	Internal	LDO	1.5	1.5	50 mA
VINTANA2	Internal	LDO	2.5, 2.75	2.75	250 mA
VINTDIG	Internal	LDO	1.5	1.5	100 mA
USBCP	Internal	Charge pump	5	5	100 mA
VUSB1V5	Internal	LDO	1.5	1.5	30 mA

Copyright © 2010, Texas Instruments Incorporated

SWESPERSEN 2010HREVISED OCTOBER 2010

www.ti.com

<u>当时11900021 (八州街</u>									
VUSB1V8	Internal	LDO	1.8	1.8	30 mA				
VUSB3V1	Internal	LDO	3.1	3.1	14 mA				
VRRTC	Internal	LDO	1.5	1.5	30 mA				
VBRTC	Internal	LDO	1.3	1.3	100 μA				

VOLTAGE REFERENCES

PARAMETER	TEST CONDITONS	MIN	ТҮР	MAX	UNIT
Internal bandgap reference voltage	On mode, measured through TESTV terminal	1.272	1.285	1.298	V
Reference voltage (V _{REF} terminal)	On mode	0.7425	0.75	0.7575	V
Retention mode reference	On mode	0.492	0.5	0.508	V
I _{REF} NMOS sink		0.9	1.0	1.1	μA
	Bandgap			25	
	I _{REF} block			20	
Ground current	Preregulator			15	μA
	V _{REF} buffer			10	P. (
	Retention reference buffer			10	
Output spot noise	100 Hz			1	μV/√Hz
A-weighted noise (rms)			200		nV (rms)
P-weighted noise (rms)			150		nV (rms)
Integrated noise	20 Hz to 100 kHz		2.2		μV
I _{BIAS} trim bit LSB				0.1	μA
Ripple rejection	< 1 MHz from VBAT	60			dB
Start-up time				1	ms

BACKUP BATTERY CHARGER

PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
VBACKUP to MADC input attenuation	VBACKUP from 1.8 V to 3.3 V		0.33		V/V
	VBACKUP = 2.8 V, BBCHEN = 1, BBISEL = 00	10	25	45	μΑ
	VBACKUP = 2.8 V, BBCHEN = 1, BBISEL = 01	105	150	270	μΑ
	VBACKUP = 2.8 V, BBCHEN = 1, BBISEL = 10	350	500	900	μΑ
Backup battery	VBACKUP = 2.8 V, BBCHEN = 1, BBISEL = 11	0.7	1.0	1.8	mA
charging current	VBACKUP = 0 V, BBCHEN = 1, BBISEL = 00	17.5	25	45	μΑ
	VBACKUP = 0 V, BBCHEN = 1, BBISEL = 01	105	150	270	μΑ
	VBACKUP = 0 V, BBCHEN = 1, BBISEL = 10	350	500	900	μΑ
	VBACKUP = 0 V, BBCHEN = 1, BBISEL = 11	0.7	1.0	1.8	mA

www.hfomps65021"(共应商

SWCS048C - MARCH 2010 - REVISED OCTOBER 2010

			1		
PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
End backup	IVBACKUP = $-10 \mu A$, BBSEL = 00	2.4	2.5	2.6	V
battery charging	IVBACKUP = $-10 \mu A$, BBSEL = 01	2.9	3.0	3.1	V
voltage:	IVBACKUP = $-10 \mu A$, BBSEL = 10	3.0	3.1	3.2	V
VBBCHGEND	IVBACKUP = $-10 \mu A$, BBSEL = 11	3.1	3.2	3.3	V

BATTERY THRESHOLD LEVELS

PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
Main botton/	Measured on VBAT terminal, VMBCH_SEL = 00	3.14	3.2	3.3	V
Main battery	Measured on VBAT terminal, VMBCH_SEL = 01	3.04	3.1	3.2	V
charged threshold VMBCH	Measured on VBAT terminal, VMBCH_SEL = 10	3.24 3.3 3.4 3.34 3.4 3.5	V		
	Measured on VBAT terminal, VMBCH_SEL = 11	3.34	3.4 3.5 V	V	
Main battery low threshold VMBLO	VBACKUP = 3.2 V, measured on VBAT terminal (monitored on terminal ONNOFF)	2.55	2.7	2.8	V
Main battery high	Measured on terminal VBAT, VBACKUP = 0 V	d on terminal VBAT, 25 265	3.0	V	
threshold VMBHI	Measured on terminal VBAT, VBACKUP = 3.2 V	2.5	2.85	3.0	V
Batteries not	Measured on terminal VBACKUP or VBAT	1.6	1.8	2.0	V
present threshold VBNPR	Measured on terminal VBAT with VBACKUP = 0 V, in slave mode	1.95	2.1	2.25	V

POWER CONSUMPTION

The typical power consumption is obtained in the nominal operating conditions and with the TPS65921 standalone.

МС	DE	DESCRIPTION	TYPICAL CONSUMPTION	
		Only the RTC date is maintained with a	VBAT not present and Quartz present	2.25 μ A × 3.2 V = 7.2 μ W
	BACKUP	No main source is connected. The	VBAT not present and Quartz not present (only running with RC32k)	(2.25 + 7) μA × 3.2 V = 29.6 μW
	WAIT-ON do	The phone is apparently off for the user, a main battery is present and well-charged.	VBAT = 3.8 V and Quartz present	64 μA × 3.8 V = 243.2 μW
C021 boot mode		The RTC registers, registers in backup domain are maintained. The wak-eup capabilities (like the PWRON button) are available.	VBAT = 3.8 V and Quartz not present	(64 + 7) μA × 3.8 V = 270 μW
	ACTIVE No Load HFCLK = 26 MHz	Subsystem is powered by the main battery. All supplies are enabled with no external		(2995 + 433) μA × 3.8 V = 13026 μW
	ACTIVE No Load HFCLK = 38.4 MHz	load, internal reset is released, and the associated processor is running. USB intertupt handler consumes 433 μA (typ).	VBAT = 3.8 V	(3879 + 433) μA × 3.8 V = 16386 μW
	SLEEP No Load	The main battery powers subsystem. Selected supplies are enabled but in low-consumption mode and associated processor is in low-power mode.	VBAT = 3.8 V	492 μA × 3.8 V = 1870 μW

SWE 90486-MAREH 2010HREVISED OCTOBER 2010

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{IN}	Input voltage	On mode: V _{IN} = VBAT	2.7	3.6	4.5	V
Vo	Output voltage		4.625	5.0	5.25	V
		VBAT > 3 V at VBUS	0		100	
I _{load}	Rated output current	2.7 V < VBAT < 3 V, at VBUS	0		50	mA
	Efficiency	I_{LOAD} = 100 mA, VBAT = 3.6 V		55%		
	Setting time	$I_{LOADmax/2}$ to $I_{LOADmax}$ in 5 μs		100	400	μs
	Start-up time				3	ms
	Short-circuit limitation current		250	350	450	mA
	DC load regulation	I _{LOADmin} to I _{LOADmax}		250	500	mV
	DC line regulation	3.0 V to VBAT _{max}		050 050	250 250	
	DC line regulation	I _{LOAD} = 100 mA		250	350	mV
		I _{VBUS_5Vmax/2} – IVBUS_5Vmax		300	350	
	Transient load regulation	50 μs, C = 2 × 4.7 μF		ļ		mV
		$0 - I_{VBUS_{5Vmax/2}}$, 50 µs, C = 2 × 4.7 µF			350	
	Transient line regulation	VBAT _{min} to VBAT _{max} in 50 μ s, C = 2 × 4.7 μ F		300	350	mV

HOT-DIE DETECTION AND THERMAL SHUTDOWN

PARAMETER	THRESHOLD (NOMINAL) ⁽¹⁾
Thermal hot-die selection THERM_HDSEL[1:0]	Threshold (nominal) ⁽¹⁾
00 (1st hot-die threshold)	Rising temp: 120°C
	Falling temp: 111°C
01 (2nd bat dia threshold)	Rising temp: 130°C
01 (2nd hot-die threshold)	Falling temp: 121°C
10 (2rd bat dia thrashald)	Rising temp: 140°C
10 (3rd hot-die threshold)	Falling temp: 131°C
11 (4th hot-die threshold)	Not used
Thermal shutdown enable	Threshold (nominal) ⁽¹⁾ - Rising temp: 150°C
	Threshold (nominal) ⁽¹⁾ - Falling temp: 140°C

(1) The minimum/maximum range is $\pm 5\%$

USB

LS/FS SINGLE-ENDED RECEIVERS

	PARAMETER	COMMENTS	MIN	ТҮР	MAX	UNIT
	•	USB Single-Ended R	eceivers			
Skew between VP and VM	SKWVP_VM	Driver outputs unloaded	-2	0	2	ns
Single-ended hysteresis	V _{SE_HYS}		50			mV
High (driven)	V _{IH}		2			V
Low	V _{IL}				0.8	V
Switching threshold	V _{TH}		0.8		2	V

www.ti.com

<u>₩豐簡♥ #P\$65921 "供应商</u>

LS/FS DIFFERENTIAL RECEIVER

PARAMETER		COMMENTS	MIN	TYP	MAX	UNIT
Differential input sensitivity	VDI	Ref. USB2.0	200			mV
Differential common mode range	VCM	Ref. USB2.0	0.8		2.5	V

LS/FS TRANSMITTER

PARAMETER		COMMENTS	MIN	TYP	MAX	UNIT
Low	VOL	Ref. USB2.0	0		300	mV
High (driven)	VOH	Ref. USB2.0	2.8		3.6	V
Output signal crossover voltage	VCRS	Ref. USB2.0, covered by eye diagram	1.3		2.0	V
Rise time	TFR		75		300	ns
Fall time	TFF	Ref. USB2.0, covered by eye	75		300	ns
Differential rise and fall time matching	TFRFM	diagram	80%		125%	
Low-speed data rate	TFDRATE	Ref. USB2.0, covered by eye diagram	1.4775		1.5225	Mbps
Source jitter total (including frequency tolerance):						
- To next transition	TDJ1	Ref. USB2.0, covered by eye diagram	-25		25	ns
- For paired transitions	TDJ2		-10		10	
Source SE0 interval of EOP	TFEOPT	Ref. USB2.0, covered by eye diagram	1.25		1.5	μs
Downstream eye diagram		Ref. USB2.0, covered by eye diagram				
Differential common mode range	VCM	Ref. USB2.0	0.8		2.5	V

FS TRANSMITTER

PARAMETER		COMMENTS	MIN	ТҮР	MAX	UNIT
Low	VOL	Ref. USB2.0	0		300	mV
High (driven)	VOH	Ref. USB2.0 2.8		3.6	V	
Output signal crossover voltage	VCRS	Ref. USB2.0, covered by eye diagram 1.3		2.0	V	
Rise time	TFR	Ref. USB2.0	4		20	ns
Fall time	TFF	Ref. USB2.0	4		20	ns
Differential rise and fall time matching	TFRFM	Ref. USB2.0, covered by eye diagram	90%		111.11%	
Driver output resistance	ZDRV	Ref. USB2.0	28		44	Ω
Full-speed data rate	TFDRATE	Ref. USB2.0, covered by eye diagram	11.97		12.03	Mbps
Source jitter total (including frequency tolerance):						
- To next transition	TDJ1	Ref. USB2.0, covered by eye diagram	-2		2	ns
- For paired transitions	TDJ2		-1		1	
Source SE0 interval of EOP	TFEOPT	Ref. USB2.0, covered by eye diagram	160		175	ns
Downstream eye diagram		Ref. USB2.0, covered by eye diagram				
Upstream eye diagram						

Copyright © 2010, Texas Instruments Incorporated

SWE9448G-TWSEH 2010开展型语D OCTOBER 2010

HS DIFFERENTIAL RECEIVER

PARAMETER		COMMENTS	MIN	TYP	MAX	UNIT
High-speed squelch detection threshold (differential signal amplitude)	VHSSQ	Ref. USB2.0	100		150	mV
High-speed disconnect detection threshold (differential signal amplitude)	VHSDSC	Ref. USB2.0	525		625	V
High-speed differential input signaling levels		Ref. USB2.0, specified by eye pattern templates				mV
High-speed data signaling common mode voltage range (guidelines for receiver)	VHSCM	Ref. USB2.0	-50		600	mV
Receiver jitter tolerance		Ref. USB2.0, specified by eye pattern templates			150	ps

HS TRANSMITTER

PARAMETER		COMMENTS	MIN	TYP	MAX	UNIT	
High-speed idle level	VHSOI	Ref. USB2.0	-10		10	mV	
High-speed data signaling high	VHSOH	Ref. USB2.0	360		440	mV	
High-speed data signaling low	VHSOL	Ref. USB2.0 –10		10	mV		
Chirp J level (differential voltage)	VCHIRPJ	Ref. USB2.0	2.0 700 1100		1100	mV	
Chirp K level (differential voltage)	VCHIRPK	Ref. USB2.0	-825	25 –500		mV	
Rise Time (10% – 90%)	THSR	Ref. USB2.0, covered by eye diagram	500				
Fall time (10% – 90%)	THSR	Ref. USB2.0, covered by eye diagram	500				
Driver output resistance (which also serves as high-speed termination)	ZHSDRV	Ref. USB2.0	40.5		49.5	Ω	
High-speed data range	THSDRAT	Ref. USB2.0, covered by eye diagram	479.76		480.24	Mbps	
Data source jitter		Ref. USB2.0, covered by eye diagram					
Downstream eye diagram		Ref. USB2.0, covered by eye diagram					
Upstream eye diagram		Ref. USB2.0, covered by eye diagram					

UART TRANSCEIVER

	PARAMETER	MIN	MAX	UNIT
t _{PH_DP_CON}	Phone D+ connect time	100		ms
t _{PH_DISC_DET}	Phone D+ disconnect time	150		ms
f _{UART_DFLT}	Default UART signaling rate (typical rate)		9600	bps

PARAMETER		COMMENTS	MIN	TYP	MAX	UNIT	
UART Transmitter CEA-2011							
Phone UART edge rates	t _{PH_UART_EDG}	DP_PULLDOWN asserted			1	Ms	
Serial interface output high	V _{OH_SER}	ISOURCE = 4 mA	2.4	3.3	3.6	V	
Serial interface output low V _{OL_SER}		ISINK = -4 mA	0	0.1	0.4	V	

www.ti.com

www.非余ompccc001"/出 法

* 些 街 9 TP S 65921 " 供 应 商 SWC S048C - MARCH 2010 - REVISED OCTOBER 2010										
PARAMETER COMMENTS MIN TYP MAX UNIT										
UART Receiver CEA-2011										
Serial interface input high	V _{IH_SER}	DP_PULLDOWN asserted	2.0			V				
Serial interface input low	V _{IL_SER}	DP_PULLDOWN asserted			0.8	V				
Switching threshold	V _{TH}		0.8		2.0	V				

PULLUP/PULLDOWN RESISTORS

PARAMETER		COMMENTS	MIN	TYP	MAX	UNIT			
Pullup Resistors									
Bus pullup resistor on R _{PUI} upstream port (idle bus)		Bus idle	0.9	1.1	1.575	1.0			
Bus pullup resistor on upstream port (receiving)	R _{PUA}	Bus driven/driver's outputs unloaded	1.425	2.2	3.09	kΩ			
High (floating)	V _{IHZ}	Pullups/pulldowns on both DP and DM lines	2.7		3.6	V			
Phone D+ pullup voltage	V _{PH_DP_UP}	Driver's outputs unloaded	3.0	3.3	3.6	V			
		Pulldown Resisto	ors						
Phone D+/– pulldown	R _{PH_DP_DWN}	Driver's outputs unloaded	14.25	18	24.8	kΩ			
High (floating)	V _{IHZ}	Pullups/pulldowns on both DP and DM lines	2.7		3.6	V			
		D+/- Data line							
Upstream facing port	C _{INUB}	[1.0]		22	75	pF			
On-the-go device leakage	V _{OTG_DATA_LK} g	[2]			0.342	V			
Input impedance exclusive of pullup/pulldown	Z _{INP}	Driver's outputs unloaded	300			kΩ			

OTG VBUS

PARAMETER		COMMENTS	MIN	ТҮР	MAX	UNIT
		VBUS Wakeup Compa	arator		+	
VBUS wake-up delay	DEL _{VBUS_WK_}				15	μs
		VBUS Comparato	rs			
A-device session valid	V _{A_SESS_VLD}		0.8	1.1	1.4	V
A-device V _{BUS} valid	V _{A_VBUS_VLD}		4.4	4.5	4.625	V
B-device session end	$V_{B_SESS_END}$		0.2	0.5	0.8	V
B-device session valid	V _{B_SESS_VLD}		2.1	2.4	2.7	V
		VBUS Line				
A-device VBUS input impedance to ground	R _{A_BUS_IN}	SRP (VBUS pulsing) capable A-device not driving VBUS	13.77		100	kΩ
B-device VBUS SRP pulldown	R _{B_SRP_DWN}	5.25 V / 8 mA, pullup voltage = 3 V	0.656	10		kΩ
B-device VBUS SRP pullup	R _{B_SRP_UP}	(5.25 V – 3 V) / 8 mA, pullup voltage = 3 V	0.85	1.3	1.75	kΩ
B-device VBUS SRP rise time maximum for OTG-A communication	t _{RISE_SRP_UP_} MAX	0 to 2.1 V with < 13 μF load			34	ms
B-device VBUS SRP rise time minimum for standard host connection	t _{RISE_SRP_UP_} MIN	0.8 to 2.0 V with > 97 μF load	46			ms

SWE 90486-MAREH 2010HREV SED OCTOBER 2010

EXAS

www.ti.com

OTG ID

PARAMETER		COMMENTS	MIN	ТҮР	MAX	UNIT				
VBUS Wakeup Comparator										
ID wake-up comparator	R _{ID_WK_UP}	Wakeup when ID shorted to ground.	30		100	kΩ				
	ID C	omparators — ID External Resis	stors Specific	ations	•					
ID ground comparator	R _{ID_GND}	ID_GND interrupt	4	20	25	kΩ				
ID Float comparator	R _{ID_FLOAT}	ID_FLOAT interrupt	200		500	kΩ				
		ID Line								
Phone I _D pullup to $V_{PH_ID_UP}$	R _{PH_ID_UP}	ID unloaded (VRUSB)	70	90	286	kΩ				
Phone I _D pullup voltage V _{PH_ID_UP}		Connected to VRUSB	2.5		3.2	V				
ID line maximum voltage					5.25	V				

USB CHARGER DETECTION

USB Charger Detection Debounce Time									
REQUIREMENT	PARAMET ER	NB CLOCK	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT		
Minimum 10 ms	DEBVBUS_ TIME	448	ACTIVE/SLEEP mode ⁽¹⁾	13.7		13.7	ms		
Minimum 20 ms	DEBUSBC HG_TIME	896	ACTIVE/SLEEP mode ⁽¹⁾	27.3		27.3	ms		

(1) When clocked only on CK32K Xtal oscillator.

Table 4. Voltages

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNIT	REF
Logic Threshold	V _{LGC}		0.8	2.0	V	1.4.4
D+ Source Voltage	V _{DP_SRC}	Output current > 250 μA	0.5	0.675	V	
Data Detect Voltage	V _{DAT_REF}		0.25	0.4	V	
Data Line Leakage Voltage	V _{DAT_LKG}		0	3.6	V	3.9

Table 5. Currents

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNIT	REF
Portable Device Current from Charging Host Port during chirp	IDEV_HCHG_CHRP			710	mA	3.6.2
Data Contact Detect Current Source	I _{DP_SRC}		7	13	μΑ	
D- Sink Current	I _{DM_SINK}		50	150	μA	

Table 6. Resistances

D+ pulldown resistance	R _{DP_DWN}	14.25	24.8	kΩ
D- pulldown resistance	R _{DM_DWN}	14.25	24.8	kΩ

Table 7. USB Charger Detection (Wait and Debounce Timing)

USB Charger Detection (Wait and Debounce Timing)							
Requirement	PARAMET ER	NB CLOCK	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT

<u>₩豐簡¶P\$65921"供应商</u>

SWCS048C - MARCH 2010 - REVISED OCTOBER 2010

		USB Charge	Detection (Wait and Debo	unce Timing)		
Minimum 200 us	D+ Current source on-time TIDP_SRC_ ON	8	ACTIVE/SLEEP mode ⁽¹⁾	244.1	244.1	μs
Minimum 40 ms	D+ Voltage source on-time TVDP_SRC _ON	1792	ACTIVE/SLEEP mode ⁽¹⁾	54.7	54.7	ms
Minimum 40 ms	D+ Voltage source off to high current TVDP_SRC _HICRNT	1792	ACTIVE/SLEEP mode ⁽¹⁾	54.7	54.7	ms
Minimum 2 s	DATA_CON TACT_DET ECT Timeout TDCD_TIM EOUT	89600	ACTIVE/SLEEP mode ⁽¹⁾	2.73	2.73	S

(1) When clocked only on CK32K Xtal oscillator. Note: LS Device mode not supported

MADC

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNIT
Resolution			10		Bit
Input dynamic range for external input ADCIN0		0		1.5	V
MADC voltage reference			1.5		V
Differential nonlinearity		-1		1	LSB
Integral nonlinearity	Best fitting	-2		2	LSB
Offset	Best fitting	-28.5		28.5	mV
Input bias			1		μA
Input capacitor CBANK				10	pF
Input current leakage				1	μΑ

MADC Analog Input Range and Prescalar Ratio

MADC CHANNEL	INT/EXT	INT/EXT ANALOG INPUT RANGE (V)			PRESCALAR		
		NAL N		OUTPUT	RANGE (V)	DIVIDER	NOTE
		MIN	MAX	MIN	MAX RATIO	NOTE	
ADCIN0: General- purpose input ⁽¹⁾	External	0.0	1.5	N/A	N/A	1	No prescalar
ADCIN1:7 Reserved	Internal	N/A	N/A	N/A	N/A	N/A	Not used

(1) General-purpose input has to be tied to ground when TPS65921 internal power supply (VINTANA1) is off.

www.ti.com

SWESPHER CT MARCH 2010HREVISED OCTOBER 2010

	<u>9951 (K)7718</u>						
ADCIN8: VBUS Voltage (VBUS)	Internal						Prescalar in USB subchip.
		0.0	6.5	0.0	1.5	3/14	Rdivider = $(6 \times 2.76 \text{ k}\Omega)/(28 \times 2.76 \text{ k}\Omega)$ (typ) ⁽²⁾
ADCIN9: Backup battery voltage (BKBAT)	Internal	1.8	3.3	0.6	1.1	1/3	Prescalar integrated Rdivider = 212 $k\Omega/636 k\Omega$ $(typ)^{(2)}$
ADCIN10:11 Reserved	Internal	N/A	N/A	N/A	N/A	N/A	
ADCIN12: Main battery voltage	Internal						Prescalar integrated
(VBAT)		2.7	4.7	0.675	1.175	0.25	Rdivider = 9.85 kΩ/(4 × 9.85 kΩ) (typ) ⁽³⁾
ADCIN13:15 Reserved	Internal	N/A	N/A	N/A	N/A	N/A	

(2) Tolerance for resistors-type (PL_VHSR): ±19%
 (3) Tolerance for resistors-type (PL_HR): ±12%

The table below summarizes the sequence conversion timing characteristics. Figure 5 shows one conversion sequence general timing diagram.

PARAMETER	COMMENTS	MIN	TYP	MAX	UNIT
F	Running frequency		1		MHz
T = 1/F	Clock period		1		μs
Ν	Number of analog inputs to convert in a single sequence	0		16	
Tstart	SW1, SW2, or USB asynchronous request or real-time STARTADC request	3		4	μs
Tsettling time	Settling time to wait before sampling a stable analog input (capacitor bank charge time)				
	Tsettling is calculated from the max((Rs + Ron)*Cbank) of all possible input sources (internal or external). Ron is the resistance of the selection analog input switches (5 kOHM). This time is software programmable by OCP register; default value is 12 µs.	5	12	260	μS
Tstartsar	The successive approximation registers ADC start time		1		μs
Tadc time	The successive approximation registers ADC conversion time		10		μs

SWCS048C - MARCH 2010 - REVISED OCTOBER 2010

₩₩₩.₩\$@₩P\$65021"(世应商

Tcapture time	Tcapture time is the conversion result capture time.		2		μs
Tstop		1		2	μS
Full Conversion Sequence Time	Only one channel (N = 1) ^{(1)}	22		39	μS
	All channels ⁽²⁾	352		624	
Conversion Sequence Time	Without Tstart and Tstop: Only one channel $(N = 1)^{(1)}$	18		33	μS
	Without Tstart and Tstop: All channels ⁽¹⁾	288		528	•
STARTADC pulse duration	STARTADC period is T	0.33			μs

(1) General-purpose input ADCIN0 must be tied to ground when TPS65921 internal power supplies (VINTANA1) is off.

(2) Total Sequence Conversion Time General Formula: Tstart + N × (1 + Tsettling + Tadc + Tcapture) + Tstop.

This table is illustrated in Figure 5. The Busy parameter indicates that a conversion sequence is running, and the channel N result register parameter corresponds to the result register of RT/GP selected channel.

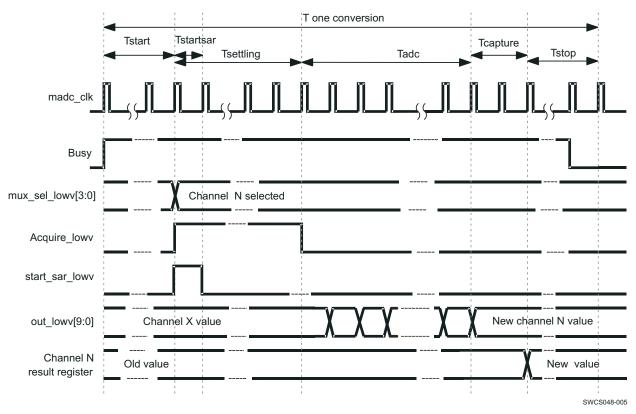


Figure 5. One Conversion Sequence General Timing Diagram

MADC Power Consumption

PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
Power on consumption	Running frequency f = 1 MHz		1 ⁽¹⁾		mA
Power down consumption			1		μΑ

(1) The consumption is given in stand-alone mode.

SWE SHAREH 2010HREVISED OCTOBER 2010

TPS65921 Interface Target Frequencies

Table below assumes testing over the recommended operating conditions.

I/O INTERFACE	INTERFAC	INTERFACE DESIGNATION		
			1.5 V	
SmartReflex I2C		Slave high-speed mode	3.6 Mbps	
General-purpose I2C	I ² C Interface	Slave fast-speed mode	400 kbps	
		Slave standard mode	100 kbps	
		High speed	480 Mbps	
USB	USB	Full speed	12 Mbps	
		Low speed	1.5 Mbps	
	Real/View® ICE tool		30 MHz	
JTAG	XDS560 and XDS510 tools		30 MHz	
	Lauterbach™ tool		30 MHz	

I²C Timing

The TPS65921 provides two I²C HS slave interfaces (one for general-purpose and one for SmartReflex). These interfaces support the standard mode (100 kbps), fast mode (400 kbps), and HS mode (3.5 Mbps). The general-purpose I²C module embeds four different slave hard-coded addresses (ID1 = 48h, ID2 = 49h, ID3 = 4Ah, and ID4 = 4Bh). The SmartReflex I²C module uses one slave hard-coded address (ID5). The master mode is not supported.

Table 8 and Table 9 assume testing over the recommended operating conditions.

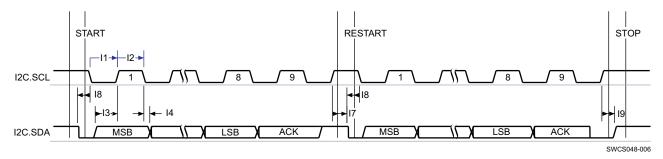


Figure 6. I²C Interface—Transmit and Receive in Slave Mode

NO.	PAI	PARAMETER		MAX	UNIT		
Slave High-Speed Mode							
13	t _{su(SDA-SCLH)}	Setup time, SDA valid to SCL high	10		ns		
14	t _{h(SCLL-SDA)}	Hold time, SDA valid from SCL low	0	70	ns		
17	t _{su(SCLH} -SDAL)	Setup time, SCL high to SDA low	160		ns		
8	t _{h(SDAL-SCLL)}	Hold time, SCL low from SDA low	160		ns		
19	t _{su(SDAH-SCLH)}	Setup time, SDA high to SCL high	160		ns		

Table 8. I²C Interface Timing Requirements⁽¹⁾⁽²⁾

 (1) The input timing requirements are given by considering a rising or falling time of: 80 ns in high-speed mode (3.4 Mbits/s) 300 ns in fast-speed mode (400 Kbits/s) 1000 ns in standard mode (100 Kbits/s)

(2) SDA is equal to I2C.SR.SDA or I2C.CNTL.SDA SCL is equal to I2C.SR.SCL or I2C.CNTL.SCL

24 Submit Documentation Feedback

SWCS048C - MARCH 2010 - REVISED OCTOBER 2010

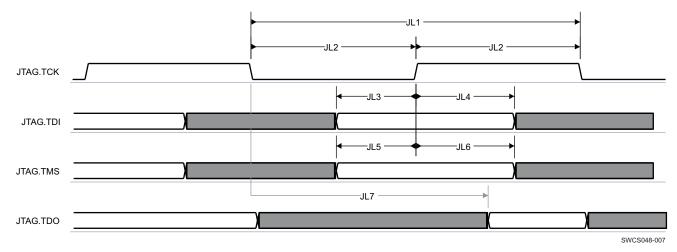
<u>₩豐簡♥₽₽\$65921"供应商</u>

Table 8. I ² C Interface Timing Requirements ⁽¹⁾⁽²⁾ (continued)

			•	. ,	
		Slave Fast-S	Speed Mode		
13	t _{su(SDA-SCLH)}	Setup time, SDA valid to SCL high	100		ns
14	t _{h(SCLL-SDA)}	Hold time, SDA valid from SCL low			ns
17	t _{su(SCLH-SDAL)}	Setup time, SCL high to SDA low	0.6		ns
18	t _{h(SDAL-SCLL)}	Hold time, SCL low from SDA low	0.6		ns
19	t _{su} (SDAH-SCLH)	Setup time, SDA high to SCL high	0.6		ns
		Slave Stan	dard Mode		
13	t _{su(SDA-SCLH)}	Setup time, SDA valid to SCL high	250		ns
14	t _{h(SCLL-SDA)}	Hold time, SDA valid from SCL low	0		ns
17	t _{su(SCLH-SDAL)}	Setup time, SCL high to SDA low	4.7		ns
18	t _{h(SDAL-SCLL)}	Hold time, SCL low from SDA low	4		ns
19	t _{su(SDAH-SCLH)}	Setup time, SDA high to SCL high	4		ns

Table 9. I²C Interface Switching Requirements⁽¹⁾⁽²⁾

NO.	I	PARAMETER	MIN	MAX	UNIT
		Slave High-spe	ed Mode	1	
11	t _{w(SCLL)}	Pulse duration, SCL low	160		ns
12	t _{w(SCLH)}	Pulse duration, SCL high	60		ns
	-	Slave Fast-spe	ed Mode	•	•
11	t _{w(SCLL)}	Pulse duration, SCL low	1.3		ns
12	t _{w(SCLH)}	Pulse duration, SCL high	0.6		ns
	i.	Slave Standar	d Mode		
11	t _{w(SCLL)}	Pulse duration, SCL low	4.7		ns
12	t _{w(SCLH)}	Pulse duration, SCL high	4		ns


The capacitive load is equivalent to: 100 pF in high-speed mode (3.4 Mbits/s) 400 pF in fast-speed mode (400 Kbits/s) 400 pF in standard mode (100 Kbits/s)
 SDA is equal to I2C.SR.SDA or I2C.CNTL.SDA SCL is equal to I2C.SR.SCL or I2C.CNTL.SCL

SWE 90486-MAREH 2010HREWSED OCTOBER 2010

www.ti.com

JTAG Interfaces

Table 10 and Table 11 assume testing over the recommended operating conditions.

The input timing requirements are given by considering a rising or falling edge of 7 ns.

JTAG Interface Timing Requirements

•							
NO.	PA	RAMETER	MIN	MAX	UNIT		
	L	Cloc	:k				
JL1	t _{c(TCK)}	Cycle time, JTAG.TCK period	30		ns		
JL2	t _{w(TCK)}	Pulse duration, JTAG.TCK high or low ⁽¹⁾	0.48 × P	0.52 × P	ns		
	L	Read Ti	ming				
JL3	JL3 t _{su(TDIV-TCKH)} Setup tim JTAG.TD before JT high		8		ns		
JL4	t _{h(TDIV-TCKH)}	Hold time, JTAG.TDI valid after JTAG.TCK high	5		ns		
JL5	t _{su(TMSV-TCKH)}	Setup time, JTAG.TMS valid before JTAG.TCK high	8		ns		
JL6	t _{h(TMSV-TCKH)}	Hold time, JTAG.TMS valid after JTAG.TCK high	5		ns		

Table 10. JTAG Interface Timing Requirements

(1) P = JTAG.TCK clock period

The capacitive load is equivalent to 35 pF.

JTAG Interface Switching Characteristics

Table 11. JTAG Interface Switching Characteristics

NO.	PARAMETER	MIN	MAX	UNIT		
Write Timing						

<u>*警祷9 PS65921 "供应商</u>

SWCS048C - MARCH 2010 - REVISED OCTOBER 2010

Table 11. JTAG Interface Switching Characteristics (continued)					
JL7	t _{d(TCK-TDOV))}	Delay time, JTAG, TCK active edge to JTAG.TDO valid	0	14	ns

NO.	PA	RAMETER	MIN	MAX	UNIT
		Clo	ck	· · · · · · · · · · · · · · · · · · ·	
JL1	t _{c(TCK)} Cycle time JTAG.TCK		30		ns
JL2	t _{w(TCK)}	Pulse duration, JTAG.TCK high or low ⁽¹⁾	0.48 × P	0.52 × P	ns
	+	Read T	iming	•	
JL3		Setup time, JTAG.TDI valid before JTAG.TCK high	8		ns
JL4	t _{h(TDIV-TCKH)}	Hold time, JTAG.TDI valid after JTAG.TCK high	5		ns
JL5	t _{su(TMSV-TCKH)}	Setup time, JTAG.TMS valid before JTAG.TCK high	8		ns
JL6	t _{h(TMSV-TCKH)}	Hold time, JTAG.TMS valid after JTAG.TCK high	5		ns

(1) P = JTAG.TCK clock period

Debouncing Time

Debounce times are listed in Table 12.

DEBOUNCING FUNCTIONS	BLOCK	PROGRAMMABLE	DEBOUNCING TIME	DEFAULT			
Main battery charged threshold (<3.2 V)	Battery monitoring	No	580 μs	580 μs			
Main battery low threshold detection (<2.7 V)		No	60 µs	60 μs			
Main battery plug detection		No	60 μs	60 µs			
Debouncing functions interrupt generation debounce	POWER	No	125.6 μs	125.6 μs			
Plug/unplug detection VBUS ⁽¹⁾	USB	Yes	0 to 250 ms (32/32768-second stgif)	30 ms			
Plug/unplug detection ID ⁽²⁾	USB	Yes	0 to 250 ms (32/32768-second stgif)	50 ms			
Debouncing functions interrupt generation debounce for VBUS and ID ⁽³⁾	POWER	Yes	0 to 250 ms	70 ms			
Hot-die detection	Thermistor	No	60 µs	60 μs			
Thermal shutdown detection		No	60 μs	60 μs			

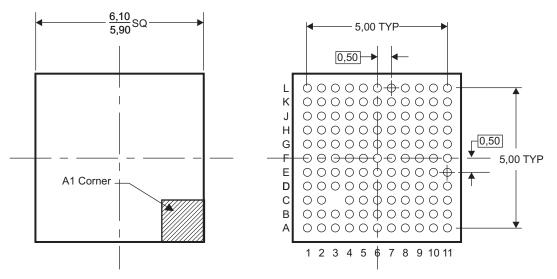
Table 12. Debouncing Time

Programmable in the VBUS_DEBOUNCE register.
 Programmable in the ID_DEBOUNCE register.
 Programmable in the RESERVED_E[2:0] CFG_VBUSDEB register

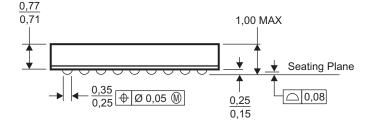
Copyright © 2010, Texas Instruments Incorporated

TEXAS INSTRUMENTS

www.ti.com


 Table 12. Debouncing Time (continued)

PWRON ⁽⁴⁾	Start/stop button	No	31.25 ms	31.25 ms
NRESWARM	Button reset	No	60 μs	60 μs
MMC1/2 (plug/unplug)	GPIO	Yes	0 or 28 ms ± 2 ms	0 ms


(4) The PWRON signal is debounced 1024 × CLK32K (maximum 1026 × CLK32K) falling edge in master mode.

DEVICE INFORMATION

Figure 8 shows the ball locations for the 120-ball plastic ball grid array (PBGA) package and is used in conjunction with ball description to locate signal names and ball grid numbers.

Bottom View

SWCS048-008

Figure 8. PBGA Bottom View

NAME	BALL	SUPPLIES	TYPE	I/O	DESCRIPTION	PU/PD
ADCIN0	F2		Analog	I/O	General-purpose ADC input	NO
STARTADC	H7	VDDIO/DGND	Digital	I	ADC conversion request/JTAG test data input	NO
I2C.CNTL.SDA	C4	VDDIO/DGND	Digital	I/O	I ² C bidirectional data signal	External PU

Table 13. TERMINAL/PIN FUNCTIONS

<u>₩營销@ TPS65921"供应商</u>

SWCS048C - MARCH 2010 - REVISED OCTOBER 2010

-		
Table 13.	TERMINAL/PIN FUNCTIONS (continued)	

			IAL/PIN FUNC		aoaj	
I2C.CNTL.SCL	B3	VDDIO/DGND	Digital	I/O	I ² C bidirectional clock signal	External PU
PWROK2/ I2C.SR.SDA	D4	VDDIO/DGND	Digital	I/O	HS I ² C bidirectional data signal	External PU
VMODE2/ I2C.SR.SCL	A3	VDDIO/DGND	Digital	I/O	HS I ² C bidirectional Clock signal	External PU
PWRON	D5	VBAT/GND	Digital	I	Input detects a control command to start or stop the system.	NO
REGEN	G3		Digital	0	Enable signal for external LDO	PU
MSECURE G8 VDDIO/DGND		Digital	1	Security and digital rights management	NO	
BOOT0 E5		VBAT/GND	Digital	I	Power-up sequence selection	Programmable PD (default active)
BOOT1 F6		VBAT/GND	Digital	1	Power-up sequence selection	Programmable PD (default active)
NRESPWRON E7		VDDIO/DGND	Digital	0	Output control the NRESPWRON of the application processor	NO
NRESWARM	H8	VDDIO/DGND	Digital	I	Warm reset signal	PU
NSLEEP1 K4		VDDIO/DGND	Digital	1	ACTIVE-SLEEP state transition control signal	NO
INT1	A9	VDDIO/DGND	Digital	0	Output line interrupt	NO
SYSEN	B9	VDDIO/DGND	Digital	0	System enable output	NO
CLKEN	F10	VDDIO/DGND	Digital	0	Clock Enable	NO
32KCLKOUT	G6	VDDIO/DGND	Digital	0	32-kHz clock output	PD disabled in ACTIVE state
32KXOUT	G11	VRTC/REFGND	Analog	I	32-kHz crystal oscillator	NO
32KXIN	H11	VRTC/REFGND	Analog	I	32-kHz crystal oscillator	NO
HFCLKIN	C8	VDDIO/DGND	Analog	I	Sine wave or square wave input	NO
HFCLKOUT	K8	VDDIO/DGND	Digital	0	50% duty cycle square wave output	NO
VREF	G10	VCC5/REFGND	Analog	0	Bandgap voltage	NO
GND_AGND	K7	REFGND	Analog	I/O	Reference ground	NO
AGND	H10 AGND		Analog	I/O	Substrate ground	NO
DGND	B8 DGND Power I/O Digital ground		Digital ground	NO		
IO.1P8	A10 Power I Supply for I/O buffers (VDDIO)		NO			
BKBAT	G9 VACKUP/AGND Power I		Backup battery input (short to GND if not used)	NO		
BKBAT G9 VDD1.IN E9, E10, E11						

SWESSHER - MARCH 2010 REVISED OCTOBER 2010

www.ti.com

	I able 1	3. TERMINAL/PIN FUNCT	IONS (contil		
VDD1.GND	A11, B10, B11	Power	I/O	VDD1 DCDC power ground	NO
VDD1.L	C10, C11, D10	Power	0	VDD1 DCDC switched output	NO
VDD1.OUT	D11	Analog	I	VDD1 feedback voltage (output)	PD
VDD2.IN	K10, L10	Power	I	VDD2 DCDC input	NO
VDD2.GND	J10, J11	Power	I/O	VDD2 DCDC power ground	NO
VDD2.L	K11, L11	Power	0	VDD2 DCDC switched output	NO
VDD2.OUT	H9	Analog	I	VDD2 feedback voltage (output)	PD
VIO.IN	K2, L2	Power	I	VIO DCDC input	NO
VIO.GND	J1, J2	Power	I/O	VIO DCDC power ground	NO
VIO.L	K1, L1	Power	0	VIO DCDC switched output	NO
VIO.OUT	H1	Analog	I	VIO feedback voltage (output)	PD
VAUX12S.IN	F1	Power	I	VAUX LDO input	NO
VAUX2.OUT	G1	Power	0	VAUX regulator output	PD
VPLLA3R.IN	A6	Power	I	VPLL//VRTC LDO input	NO
VPLL1.OUT	A8	Power	0	VPLL LDO regulator output	PD
VRTC.OUT	B5	Power	0	VRTC internal LDO regulator output (internal use only)	PD
VINT.IN	A7	Power	I	VINTDIG LDO input	NO
VINTANA1.OUT	D1	Power	0	VINTANA1 internal LDO regulator output (internal use only)	PD
VINTANA2.OUT	A2	Power	0	VINTANA2 internal LDO regulator output (internal use only)	PD
VDAC.IN	C1	Power	I	VDAC/VINTANA1/ VINTAN2 LDO input	NO
VDAC.OUT	E1	Power	0	VDAC LDO regulator output	PD
VINTDIG.OUT	B7	Power	0	VINTDIG internal LDO regulator output (internal use only)	PD
VMMC1.OUT	A1	Power	0	VMMC LDO regulator output	PD
VBAT.USB	K6	Power	I	VINTUSBiP5,VIN TUSB1P8,VUSB. 3P1 input regulator	NO
VUSB.3P1	L6	Power	0	VUSB.3P1 LDO regulator output	PD

SWCS048C - MARCH 2010 - REVISED OCTOBER 2010

<u>₩豐簡¶P\$65921"供应商</u>

Table 13. TERMINAL/PIN FUNCTIONS (continued)

VINTUSB1P8.OU	10		Davas	,	VUSB1P8 LDO	
Т	J6		Power	0	regulator output (internal use only)	PD
VINTUSB1P5.OU T	J5		Power	0	VUSB1P5 LDO regulator output (internal use only)	PD
TESTV1	H2		Analog	IO	Analog test pin 1	NO
TESTV2	C9		Analog	IO	Analog test pin 2	NO
TEST	D3	VDDIO/DGND	Digital	IO	Digital test pin	PD
AVSS1	F3	AGND	Power	I/O	Analog ground	NO
AVSS2	H6	AGND	Power	I/O	Analog ground	NO
AVSS3	F9	AGND	Power	I/O	Analog ground	NO
AVSS4	A4	AGND	Power	I/O	Analog ground	NO
VBUS	K5		Power		VBUS power rail	NO
DP/ UART3.RXD	ART3 TXD I 8 Analog I/O USB differential		NO			
DN/ UART3.TXD	L8		Analog	I/O	USB differential data line	NO
ID	J7	VDDIO/DGND	Digital	I/O	USB ID	NO
UCLK	D6	VDDIO/DGND	Digital	I/O	HS USB Clock	NO
STP/ GPIO.9	E6	VDDIO/DGND	Digital	I/O	HS USB Stop	NO
DIR/ GPIO.10	A5	VDDIO/DGND	Digital	I/O	HS USB Direction	NO
NXT/ GPIO.11	C5	VDDIO/DGND	Digital	I/O	HS USB Next	NO
DATA0/ UART4.TXD	B6	VDDIO/DGND	Digital	I/O	HS USB Data0	NO
DATA1/ UART4.RXD	C6	VDDIO/DGND	Digital	I/O	HS USB Data1	NO
DATA2/ UART4.RTSI	C7	VDDIO/DGND	Digital	I/O	HS USB Data2	NO
DATA3/ UART4.CTSO/ GPIO.12	D7	VDDIO/DGND	Digital	I/O	HS USB Data3	NO
DATA4/ GPIO.14	F8	VDDIO/DGND	Digital	I/O	HS USB Data4	NO
DATA5/ GPIO.3	F11	VDDIO/DGND	Digital	I/O	HS USB Data5	NO
DATA6/ GPIO.4	E8	VDDIO/DGND	Digital	I/O	HS USB Data6	NO
DATA7/ GPIO.5	D9	VDDIO/DGND	Digital	I/O	HS USB Data7	NO
CP.IN	L4		Power	I/O	Charge pump input voltage	NO
CP.GND	J3		Power Gnd	I/O	Charge pump ground	NO
CP.CAPP	L5		Analog	I/O	Charge pump flying capacitor P	NO
CP.CAPM	L3		Analog	I/O	Charge pump flying capacitor M	NO
KPD.C0	B4	VDDIO/DGND	Open Drain	0	Keypad column 0	PU
KPD.C1	D2	VDDIO/DGND	Open Drain	0	Keypad column 1	PU
KPD.C2	E2	VDDIO/DGND	Open Drain	0	Keypad column 2	PU
KPD.C3	B2	VDDIO/DGND	Open Drain	0	Keypad column 3	PU
KPD.C4	C2	VDDIO/DGND	Open Drain	0	Keypad column 4	PU
KPD.C5	E4	VDDIO/DGND	Open Drain	0	Keypad column 5	PU
KPD.C6	E3	VDDIO/DGND	Open Drain	0	Keypad column 6	PU
KPD.C7	F4	VDDIO/DGND	Open Drain	0	Keypad column 7	PU
KPD.R0	H5	VDDIO/DGND	Digital	I	Keypad row 0	PU

Copyright © 2010, Texas Instruments Incorporated

SWEAMAG-MAREH 2010HREWSED OCTOBER 2010

Table 13. TERMINAL/PIN FUNCTIONS (continued)

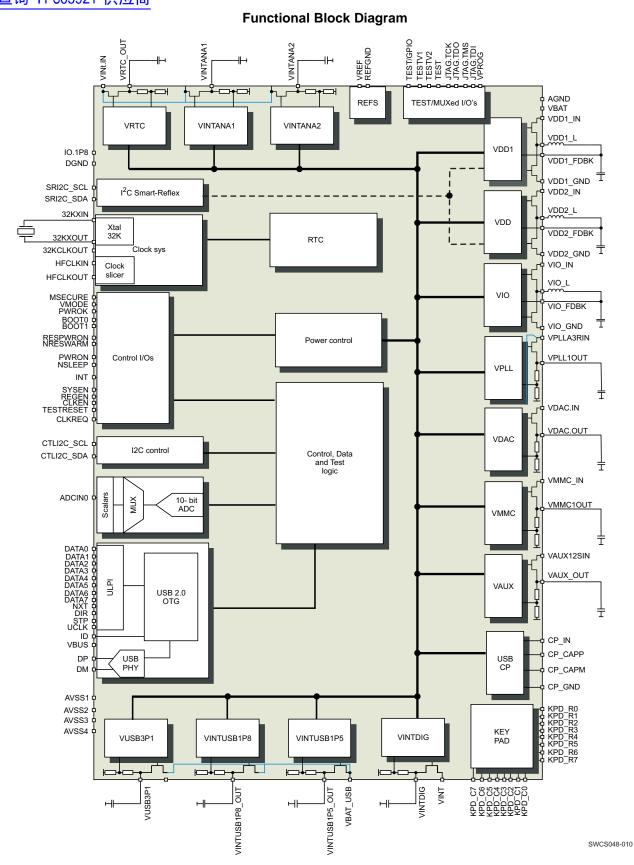
www.ti.com

		Table 13. TERMIN	AL/PIN FUNC	FIONS (conti	nued)		
KPD.R1	G4	VDDIO/DGND	Digital	I	Keypad row 1	PU	
KPD.R2	H4	VDDIO/DGND	Digital	I	Keypad row 2	PU	
KPD.R3	G5	VDDIO/DGND	Digital	I	Keypad row 3	I Keypad row 3	PU
KPD.R4	J4	VDDIO/DGND	Digital	I	Keypad row 4	PU	
KPD.R5	J8	VDDIO/DGND	Digital	I	Keypad row 5	PU	
KPD.R6	G7	VDDIO/DGND	Digital	I	Keypad row 6	PU	
KPD.R7	F5	VDDIO/DGND	Digital	I	Keypad row 7	PU	
VBAT			NO				
CLKREQ	D8	VDDIO/DGND	Digital	I		PD	
TEST.RESET	J9	VBAT/GND	Digital	I	Reset the device (except the state-machine)	PD	
VPROG	H3		Analog	I	Using to program EEPROM	NO	
JTAG.TCK/ BERCLK	F7	VDDIO/DGND	Digital	I	JTAG clock input	NO	
GPIO.0/ CD1/ JTAG.TDO	L9	VDDIO/DGND	Digital	I/O	JTAG test output or GPIO0/card detection 1	PD	
GPIO.1/ CD2/ JTAG.TDO	K9	VDDIO/DGND	Digital	I/O	JTAG test mode state or GPIO1/card detection 2	PD	
GPIO.2/ TEST1	G2	VDDIO/DGND	Digital	I	Selection between JTAG mode and application mode	Programmable PD	
VMMC1.IN	B1		Power	I	VMMC input LDO	NO	
N/A	C3	N/A	N/A	N/A	N/A	N/A	

SWCS048C - MARCH 2010 - REVISED OCTOBER 2010

<u>₩豐簡¶P\$65921"供应商</u>

	1	2	3	4	5	6	7	8	9	10	11	
A	VMMC1.OUT	VINTANA2. OUT	VMODE2/ I2C.SR.SCL	AVSS4	DIR/GPIO.10	VPLLA3R.IN	VINT.IN	VPLL1.OUT	INT1	IO.1P8	VDD1.GND	А
в	VMMC1.IN	KPD.C3	I2C.CNTL. SCL	KPD.C0	VRTC.OUT	DATA0/ UART4.TXD	VINTDIG. OUT	DGND	SYSEN	VDD1.GND	VDD1.GND	В
с	VDAC.IN	KPD.C4	#N/A	I2C.CNTL. SDA	NXT/GPIO.11	DATA1/ UART4.RXD	DATA2/ UART4.RTSI	HFCLKIN	TESTV2	VDD1.L	VDD1.L	с
D	VINTANA1. OUT	KPD.C1	TEST	PWROK2/ 12C.SR.SDA	PWRON	UCLK	DATA3/ UART4. CTSO/ GPIO.12	CLKREQ	DATA7/ GPIO.5	VDD1.L	VDD1.OUT	D
E	VDAC.OUT	KPD.C2	KPD.C6	KPD.C5	BOOT0	STP/GPIO.9	NRESPWRON	DATA6/ GPIO.4	VDD1.IN	VDD1.IN	VDD1.IN	E
F	VAUX12S.IN	ADCIN0	AVSS1	KPD.C7	KPD.R7	BOOT1	JTAG.TCK/ BERCLK	DATA4/ GPIO.14	AVSS3	CLKEN	DATA5/ GPIO.3	F
G	VAUX2.OUT	GPIO.2/ TEST1	REGEN	KPD.R1	KPD.R3	32KCLKOUT	KPD.R6	MSECURE	BKBAT	VREF	32KXOUT	G
н	VIO.OUT	TESTV1	VPROG	KPD.R2	KPD.R0	AVSS2	STARTADC	NRESWARM	VDD2.OUT	AGND	32KXIN	н
J	VIO.GND	VIO.GND	CP.GND	KPD.R4	VINTUSB1P5. OUT	VINTUSB1P8. OUT	ID	KPD.R5	TEST.RESET	VDD2.GND	VDD2.GND	J
к	VIO.L	VIO.IN	VBAT	NSLEEP1	VBUS	VBAT.USB	GND_AGND	HFCLKOUT	GPIO.1/CD2/ JTAG.TMS	VDD2.IN	VDD2.L	к
L	VIO.L	VIO.IN	CP.CAPM	CP.IN	CP.CAPP	VUSB.3P1	DP/UART3. RXD	DN/UART3. TXD	GPIO.0/CD1/ JTAG.TD0	VDD2.IN	VDD2.L	L
	1	2	3	4	5	6	7	8	9	10	11	


Figure 9. Ball Placement

TPS65921

Texas Instruments

SWESHBER 2010

www.ti.com

*暨簡9 TPS65921 "供应商

NSTRUMENTS

DETAILED DESCRIPTION

CLOCK SYSTEM

EXAS

Figure 10 shows the TPS65921 clock overview.

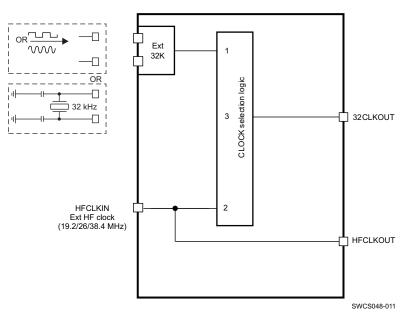


Figure 10. TPS65921 Clock Overview

The TPS65921 device can provide:

- 32KCLKOUT digital output clock generated starting from:
 - The 32-kHz RC oscillator ((3) in the block scheme)
 - The 32-kHz crystal oscillator ((1) in the block scheme). Optionally, an external 32-kHz input clock can be provided
 - HFCLKIN: an external high-frequency clock (19.2, 26, or 38.4 MHz) ((2) in the block scheme), through a dedicated internal divider, included in the CLOCK selection logic
- HFCLKOUT digital output clock with the same frequency as HFCLKIN input clock and through the clock slicer

The TPS65921 device includes a 32-kHz RC oscillator which is used as reference clock during the device startup and device is running with RC oscillator if 32-kHz crystal oscillator is tied to ground.

When the 32-kHz crystal oscillator is on provides a 32kok signal (equal to 1 meaning the crystal oscillator is on and the clock is stable), which is used to disable the RC oscillator.

If HFCLKIN is present, 32KCLKOUT switches from 32-kHz crystal or 32-kHz RC to HFCLKIN divided by the internal divider.

32-kHz OSCILLATOR

Figure 11 shows the 32-kHz oscillator block diagram with a 32.768-kHz square or sine signal in master and slave modes. Figure 12 shows an external clock source when the oscillator is configured in bypass mode. Thus, there are three configurations:

- A square- or sine-wave input can be applied to the 32KXIN pin with amplitude of 1.85 or 1.8 V. The 32KXOUT pin can be left floating. This configuration, shown in Figure 11, is used if no charge is applied on the 32KXOUT pin.
- The oscillator is in bypass mode and a square-wave input can be applied to the 32KXIN pin with amplitude of 1.8 V. The 32KXOUT pin can be left floating. This configuration, shown in Figure 12, is used if the oscillator is in bypass mode.

SWEATHORSH 2010 REVISED OCTOBER 2010

www.ti.com

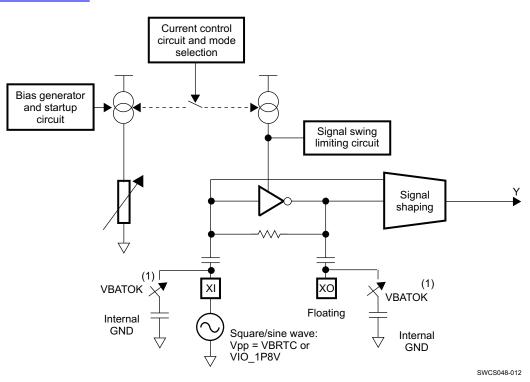


Figure 11. 32-kHz Oscillator Block Diagram Without Crystal, Option 1.

(1) Switches close by default and open only if register access enables the very-low-power mode when VBAT < 2.7 V.

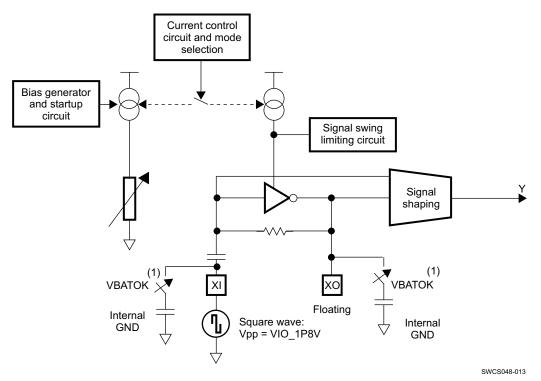
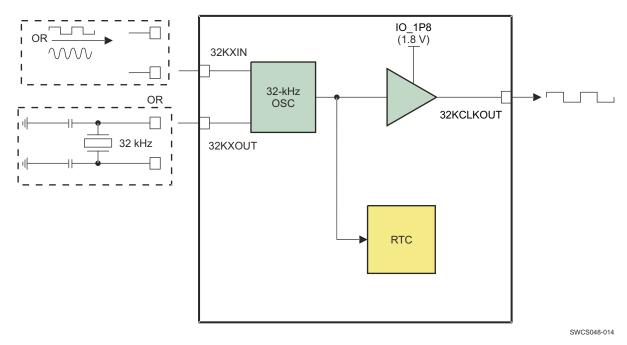
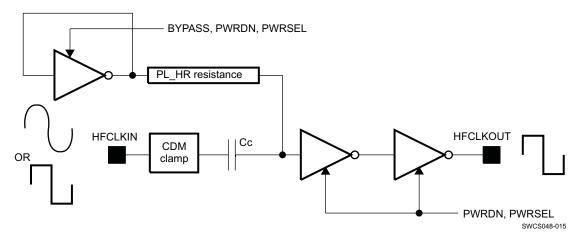



Figure 12. 32-kHz Oscillator in Bypass Mode Block Diagram Without Crystal Option 2

Switches close by default and open only if register access enables the very-low-power mode when VBAT < 2.7 V.
 Figure 13 shows the block diagram for the 32.768-kHz clock output.

/暨椅PTPS65921"供应商--

Figure 13. 32.768-kHz Clock Output Block Diagram


The TPS65921 device has an internal 32.768-kHz oscillator connected to an external 32.768-kHz crystal through the 32KXIN/32KXOUT balls or an external digital 32.768-kHz clock through the 32KXIN input (see Figure 13). The TPS65921 device also generates a 32.768-kHz digital clock through the 32KCLKOUT pin and can broadcast it externally to the application processor or any other devices. The 32KCLKOUT clock is broadcast by default in the TPS65921 active mode but can be disabled if it is not used.

The 32.768-kHz clock (or signal) is also used to clock the RTC (real-time clock) embedded in the TPS65921. The RTC is not enabled by default. It is up to the host processor to set the correct date and time and to enable the RTC functionality.

The 32KCLKOUT output buffer can drive several devices (up to 40-pF load). At start-up, the 32.768-kHz output clock (32KCLKOUT) must be stabilized (frequency/duty cycle) prior to the signal output. Depending on the start-up condition, this may delay the start-up sequence.

CLOCK SLICER

Figure 14 shows the clock slicer block diagram.

SWERNBROHMAREH 2010HREWSED OCTOBER 2010

TEXAS INSTRUMENTS

www.ti.com

The clock slicer is disabled by default and enabled when the CLKEN pad is high. The slicer transforms the HFCLKIN clock input signal into a squared clock signal used internally by the TPS65921 device and also outputs it for external use. The HFCLKIN input signal can be:

- A sinusoid with peak-to-peak amplitude varying from 0.3 to 1.45 V
- A square clock signal of amplitude 1.85 V maximum. In the case of a square clock signal, the slicer is configured in bypass or power-down mode. If a square-wave input clock is provided, it is recommended to switch the block to bypass mode when possible to avoid loading the clock.

The HFCLKIN input clock frequency must be 19.2, 26, or 38.4 MHz.

Four different modes are programmable by register. By default, the slicer is in high-performance application mode:

- Bypass mode (BP): In BP mode, which overrides all the other modes, the input signal is directly connected to the output through some buffers. The input is a rail-to-rail square wave.
- Power-down mode (PD): During PD mode, the cell does not consume any current if bypass mode is not active.
- Low-power application mode (LP): In LP mode, the input sine wave is converted to a CMOS signal (square wave) with low power consumption.
- High-performance application mode (HP): In HP mode, the input sine wave is converted to a CMOS signal (square wave). It has lower duty cycle degradation and lower input-to-output delay in comparison to the low-power mode, but it consumes more current. The drive of the squaring inverter is increased by connecting additional inverters in parallel. Details can be found in the clock slicer electrical characteristics table.

Figure 15 shows the HFCLKIN clock distribution.



Figure 15. HFCLKIN Clock Distribution

When a device needs a clock signal other than 32.768 kHz, it makes a clock request and activates the CLKREQ pin. As a result, the TPS65921 device immediately sets CLKEN to 1 to warn the clock provider in the system

<u>₩豐铈呷P\$65921"供应商</u>

about the clock request and starts a timer (maximum of 10 ms and uses the 32.768-kHz clock). Once the timer expires, the TPS65921 device opens a gated clock, the timer automatically reloads the defined value and a high-frequency output clock signal is available through the HFCLKOUT pin. The output drive of HFCLKOUT is programmable (low drive (MISC_CFG[CLK_HF_DRV] = 0) maximum load 20 pF, high drive (MISC_CFG[CLK_HF_DRV] = 1) maximum load 30 pF), by default it is programmed to support Low Drive.

With a register setting, the mirroring of CLKEN can be enabled on CLKEN2. When this mirroring feature is not enabled, the signal CLKEN2 can be used as a general-purpose output controlled through I²C accesses.

CLKREQ, when enabled, has a weak pulldown resistor to support the wired-OR clock request.

Figure 16 shows an example of the wired-OR clock request.

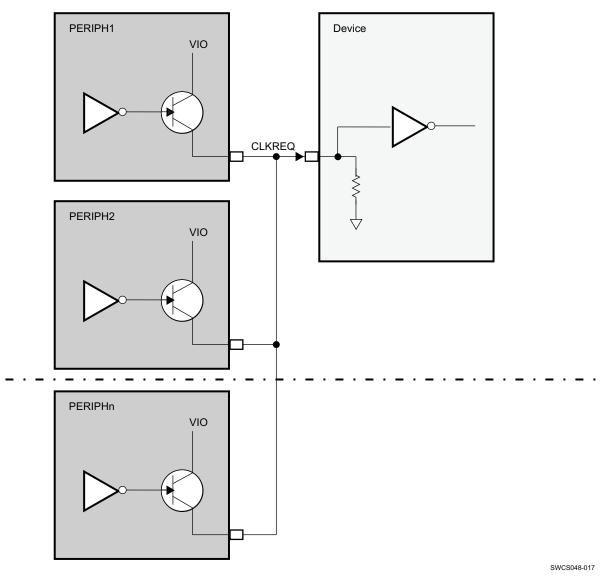


Figure 16. Example of Wired-OR Clock Request

The timer default value must be the worst case (10 ms) for the clock providers. For legacy or workaround support, the signals NSLEEP1 and NSLEEP2 can also be used as a clock request even if it is not their primary goal. By default, this feature is disabled and must be enabled individually by setting the register bits associated with each signal.

When the external clock signal is present on the HFCLKIN ball, it is possible to use this clock instead of the internal RC oscillator and then synchronize the system on the same clock. The RC oscillator can then go to idle.

Copyright © 2010, Texas Instruments Incorporated

SUSSION CONTRACT CONTRACT STATE

TEXAS INSTRUMENTS

www.ti.com

POWER PATH

STEP-DOWN CONVERTERS

Depending on the system requirements, and also to optimize mean consumption, three operating modes are allowed for each step-down converter:

- Off/power-down mode: Output voltage is not maintained, and power consumption is null
- Active: DCDC can deliver its nominal output voltage with a full load current capability. The clock selected for the 3.2-MHz oscillator is the local oscillator or an external high-frequency clock.
- Sleep: The nominal output voltage is maintained with low power consumption, but also with a low load-current capability. The clock selected for the 3.2-MHz oscillator is the local oscillator.

The SMPS operates with three modulation schemes:

- Light pulse frequency modulation (PFM)
- Pulse skipping mode (PSM)
- Continuous pulse-width modulation (PWM)

Each DCDC, all of which have the same electrical characteristics, has an integrated RC oscillator. The use of these RC oscillators is configurable through register bits, and by default the RC oscillator of VDD1 is used for all DCDC.

LDO

The VPLL programmable LDO regulator is high-PSRR, low-noise, linear regulator used for the host processor PLL supply.

The VDAC programmable LDO regulator is a high-PSRR, low-noise, linear regulator that powers the host processor dual-video DAC. It is controllable with registers through I²C and can be powered down.

The VMMC LDO regulator is a programmable linear voltage converter that powers the MMC slot. It includes a discharge resistor and over-current protection (short circuit). This LDO regulator can also be turned off automatically when the MMC card extraction is detected (through one dedicated GPIO). The VMMC LDO can be powered through an independent supply other than the battery; for example, a charge pump. In this case, the input from the VMMC LDO can possibly be higher than the battery voltage.

The VAUX general-purpose LDO regulator powers the auxiliary devices.

The VRRTC voltage regulator is a programmable, LDO, linear voltage regulator supplying (1.5 V) the embedded RTC (32.768-kHz oscillator) and dedicated I/Os of the digital host counterpart. The VRRTC regulator is also the supply voltage of the power-management digital state-machine. The VRRTC regulator is supplied from the UPR line, switched on by the main or backup battery, depending on the system state. The VRRTC output is present as long as a valid energy source is present. The VRRTC line is supplied by an LDO when VBAT > 2.7, and a clamp circuit when in backup mode.

The VINTDIG LDO regulator supplies the TPS65921 digital blocks.

To supply the TPS65921 analog blocks, there are two LDOs: VINTANA1 (1.5 V) and VINTANA2 (2.75 V/2.5 V). The 2.5-V setting is selected when the battery voltage falls below 3.0 V.

The VUSB3V1 internal LDO regulator powers the USB PHY, charger detection, and OTG of the USB subchip inside the TPS65921 device.

It can take its power from two possible sources:

- VBAT.USB (only for high battery voltages)
- VBUS (only in low-power mode, shared with CP.OUT)

See Charge-pump section for more details.

The USB standard requires data lines to be biased with pullups biased from a > 3.0 V supply, USB PHY cannot directly operate from VBAT.USB for battery voltages lower than 3.3 V.

In such case, VBUS should be supplied by a boosted voltage to ensure enough overhead for USB LDO operation. An internal charge pump (whose output is connected to VBUS/CP.OUT) can be used for this purpose.

To select between these three power sources, a power mux is connected to the VUSB3V1 LDO supply.

*暨椅***P\$65921"供应商

SWCS048C - MARCH 2010 - REVISED OCTOBER 2010

The VUSB1V8 and VUSB1V5 internal LDO regulators power the USB subchip inside the TPS65921 device.

The short-circuit current for the LDOs and DCDCs in the TPS65921 device is approximately twice the maximum load current. In certain cases when the output of the block is shorted to ground, the power dissipation can exceed the 1.2 W requirement if no action is taken. A short-circuit protection scheme is included in the TPS65921 device to ensure that if the output of an LDO or DCDC is short-circuited, then the power dissipation does not exceed the 1.2 W level.

The three USB LDOs VUSB3V1, VUSB1V8, and VUSB1V5 are included in this short circuit protection scheme which monitors the LDO output voltage at a frequency of 1 Hz, and generates an interrupt when a short circuit is detected.

The scheme compares the LDO output voltage to a reference voltage and detects a short circuit if the LDO voltage drops below this reference value (0.5 V or 0.75 V programmable). In the case of the VUSB3V1 and VUSB1V8 LDOs, the reference is compared with a divided down voltage (1.5 V typical).

If a short circuit is detected on VUSB3V1, then the power subchip FSM switches this LDO to sleep-mode.

If a short circuit is detected on VUSB1V8 or VUSB1V5, then the power subchip FSM switches the relevant LDO off.

POWER REFERENCE

The bandgap voltage reference is filtered (RC filter), using an external capacitor connected across the VREF output and an analog ground (REFGND). The VREF voltage is scaled, distributed, and buffered inside the device. The bandgap is started in fast mode (not filtered) and is set automatically by the power state-machine in slow mode (filtered, less noisy) after switch on.

POWER CONTROL

If the backup battery is rechargeable, then it can be recharged from the main battery. A programmable voltage regulator powered by the main battery allows recharging of the backup battery. The backup battery charging must be enabled using a control bit register. Charging starts when the following two conditions are met:

- Main battery voltage > backup battery voltage
- Main battery voltage > VMBCH (see electrical specification for values)

Charging continues as long as these conditions are met.

The comparators of the BBS give the two thresholds of the backup battery charging start up. The programmed voltage for the charger gives the end-of-charge threshold. The programmed current for the charger gives the charging current.

POWER USE CASES

The TPS65921 device has two modes:

- Master: The TPS65921 device decides to power up or down the system and control the other power ICs in the system with the SYSEN output.
- Slave: The TPS65921 device is controlled by another power IC with a digital signal on the PWRON input. There is no battery management in slave mode.

The modes corresponding to BOOT0–BOOT1 combination value are:

NAME	DESCRIPTION	BOOT0	BOOT1
MC021 ⁽¹⁾	Master_C021_Generic 10	1	0
SC021	Slave_C021_Generic 11	1	1

(1) Boot mode for OMAP3430 is c021 Master boot mode.

Process modes define:

- The boot voltage for the host core
- The boot sequence associated with the process
- The DVFS protocol associated with the process

www.ti.com

SWGS048G-MARCH 3010+REVISED OCTOBER 2010

MODE	C021.M			
Boot core voltage	1.2 V			
Power sequence	VIO followed by VPLL1, VDD2, VDD1			
DVFS protocol	SmartReflex interface (I ² C high speed)			

Regulator states depending on use cases:

REGULATOR		MODE: C021 (MASTER/	SLAVE) and C027 (MASTER)		
-	BACKUP	WAIT ON	SLEEP NO LOAD	ACTIVE NO LOAD	
VAUX2	OFF	OFF	OFF	OFF	
VMMC1	OFF	OFF	OFF	OFF	
VPLL1	OFF	OFF	SLEEP	ON	
VDAC	OFF	OFF	OFF	OFF	
VINTANA1	OFF	OFF	SLEEP	ON	
VINTANA2	OFF	OFF	SLEEP	ON	
VINTDIG	OFF	OFF	SLEEP	ON	
VIO	OFF	OFF	SLEEP	ON	
VDD1	OFF	OFF	SLEEP	ON	
VDD2	OFF	OFF	SLEEP	ON	
VUSB1V5	OFF	OFF	OFF	OFF	
VUSB1V8	OFF	OFF	OFF	OFF	
VUSB3V1	OFF	OFF	SLEEP	ON	

POWER TIMING

Sequence start is a symbolic internal signal to ease the description of the power sequences and occurs according to the different events detailed in Figure 18.

Sequence start timing depends on the TPS65921 starting event. If the starting event is:

- Main battery insertion, event time is 1.126 ms (time to set up internal LDO and relax internal reset)
- VBUS insertion, event time is 25 cycles of 32k

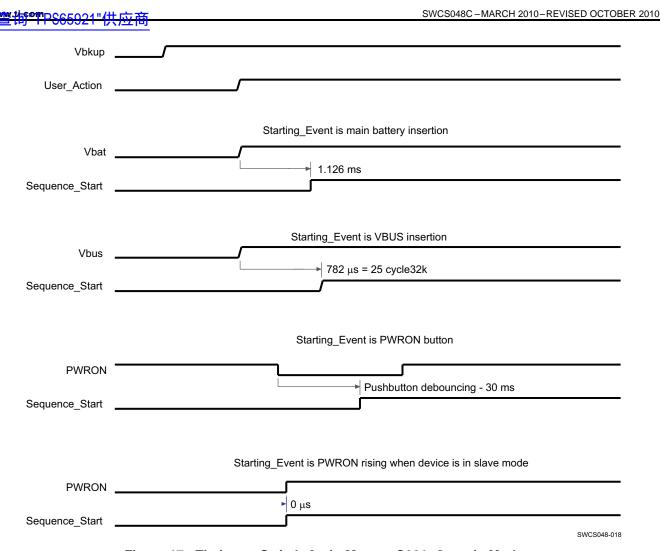


Figure 17. Timings—Switch On in Master_C021_Generic Mode

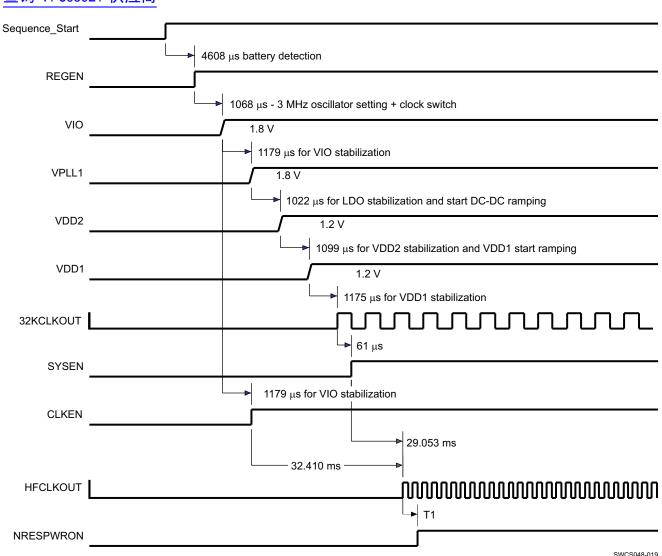

SWITCH ON IN MASTER_C021_GENERIC MODE

Figure 18 describes the timing and control that must occur in Master_C021_Generic mode. Sequence_Start is a symbolic internal signal to ease the description of the power sequences and occurs according to the different events detailed in Figure 17.

TEXAS INSTRUMENTS

www.ti.com

SUSSION TO BE 2010

Figure 18. Timings Before Sequence Start

PARAMETER		MIN	MAX	UNIT	
Τ1	With external clock from quartz	10	11	32k clock cycles	
Τ1	With no quartz. 32k from internal RC	12	14	32k clock cycles	

<u>*警椅°甲P\$65921"供应商</u>

SWITCH ON IN SLAVE_C021_GENERIC MODE

Figure 19 describes the timing and control that must occur in Slave_C021_Generic mode. Sequence_Start is a symbolic internal signal to ease the description of the power sequences and occurs according to the different events detailed in Figure 17.

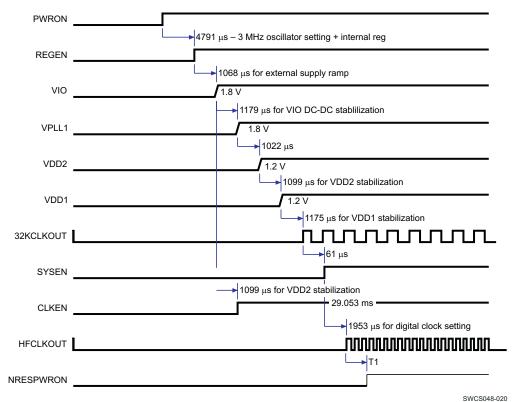


Figure 19. Timings—Switch On in Slave_C021_Generic Model

PARAMETER		MIN	MAX	UNIT
T1	With external clock from quartz	10	11	32k clock cycles
T1	With no quartz. 32k from internal RC	12	14	32k clock cycles

SWITCH-OFF SEQUENCE

This section describes the signal behavior required to switch off the system.

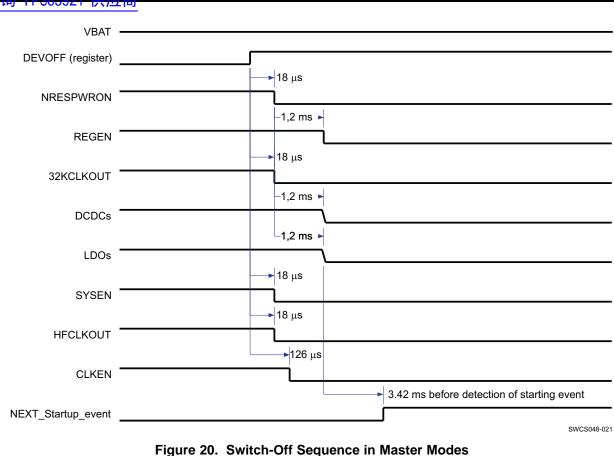

Switch-off Sequence In Master Modes

Figure 20 describes the timing and control that occur during the switch-off sequence in master modes.

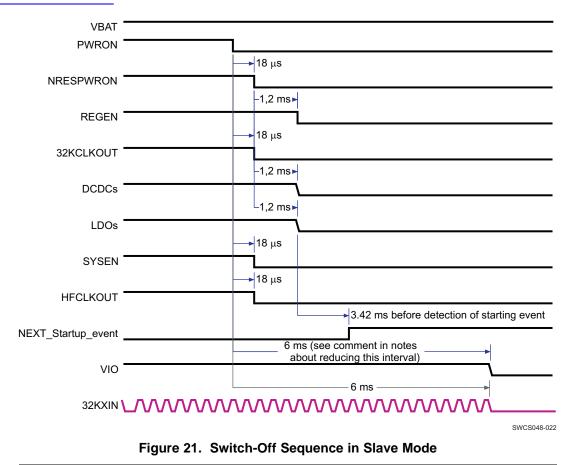
SWERREN REN 2010 HREN SED OCTOBER 2010

www.ti.com

NOTE

All of the above timings are the typical values with the default setup (depending on the resynchronization between power domains, state machinery priority, etc.).

In case the value of the HF clock is different from 19.2 MHz (with HFCLK_FREQ bit field values set accordingly inside the CFG_BOOT register), then the delay between DEVOFF and NRESPWRON/CLK32KOUT/SYSEN/HFCLKOUT is divided by 2 (meaning around 9 μ s). This is due to the internal frequency used by POWER STM switching from 3 MHz to 1.5 MHz in case the value of the HF clock is 19.2 MHz.


The DEVOFF event is the PWRON falling edge in slave mode and the DEVOFF internal register write in master mode.

Switch-Off Sequence in Slave Mode

Figure 21 describes the timing and control that occur during the switch off-sequence in slave mode.

<u>*暨街町PS65921"供应商</u>

NOTE

All of the above timings are the typical values with the default setup (depending on the resynchronization between power domains, state machinery priority, etc.).

If necessary, the 6-ms period to maintain VIO and 32KXIN after PWRON goes low can be reduced to 150 μ s. For more information,see comments in the Power Up section of the TRM.

In case the value of the HF clock is different from 19.2 MHz (with HFCLK_FREQ bit field values set accordingly inside the CFG_BOOT register), then the delay between DEVOFF and NRESPWRON/CLK32KOUT/SYSEN/HFCLKOUT is divided by 2 (meaning around 9 μ s). This is due to the internal frequency used by POWER STM switching from 3 MHz into 1.5 MHz in case the value of the HF clock is 19.2 MHz.

CHARGE PUMP

The charge pump generates a 5.0-V (nominal) power supply voltage from battery to the VBUS CP.OUT/VUSB.IN pin. The input voltage range is 2.7 to 4.5 V for the battery voltage. The charge pump operating frequency is 1 MHz.

The charge pump tolerates 6 V on VBUS/CP.OUT when it is in power down mode. The charge pump integrates a short-circuit current limitation at 450 mA.

Figure 22 shows the charge pump.

TEXAS INSTRUMENTS

SWESHBOTHWESH2919HREXSEP OCTOBER 2010

www.ti.com

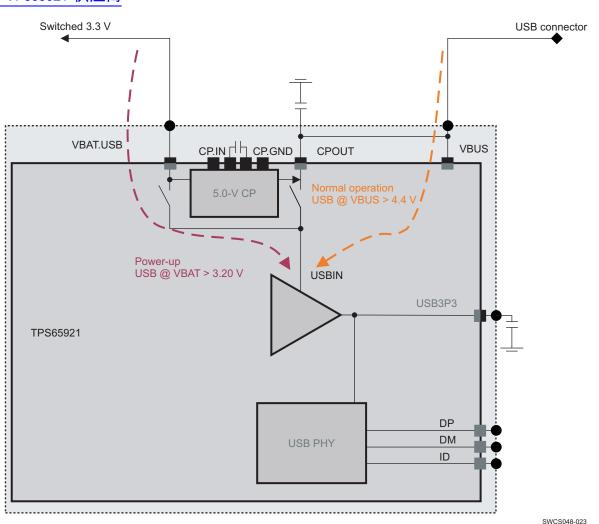


Figure 22. General Overview of the Charge Pump and Its Interfaces.

It can be used to supply USB 3.1 V LDO when battery voltage is lower than this LDO VBATmin voltage (see electrical characteristics).

By adding an external series switch under software control, charge-pump output voltage can be used as an on-the-go (OTG) supply to power OTG-B devices.

USB TRANSCEIVER

The TPS65921 device includes a USB OTG transceiver that support USB 480 Mbps HS, 12 Mbps FS, and USB 1.5 Mbps LS through a 4-pin UTMI+ ULPI.

It also includes a module covering Battery Charging Specification v1.0. Figure 23 shows the USB 2.0 PHY highlight block diagram.

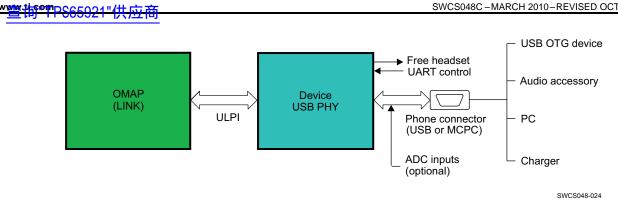


Figure 23. USB 2.0 PHY Highlight

Figure 24 shows the USB system application schematic.

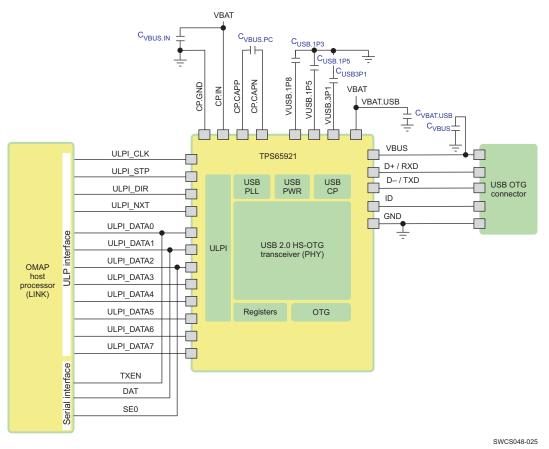


Figure 24. USB System Application Schematic

PHY

The PHY is the physical signaling layer of the USB 2.0. It contains all the drivers and receivers required for physical data and protocol signaling on the DP and DM lines.

The PHY interfaces to the USB controller through a standard digital interface called the universal transceiver macro cell interface (UTMI).

The transmitters and receivers inside the PHY are classified into two main classes:

- The FS and LS transceivers. These are the legacy USB1.x transceivers.
- The HS transceivers

Copyright © 2010, Texas Instruments Incorporated

SWERREI MARCH 2010 HREVIED OCTOBER 2010

To bias the transistors and run the logic, the PHY also contains reference generation circuitry consisting of:

- A DPLL, which does a frequency multiplication to achieve the 480-MHz low-jitter lock necessary for USB, and also the clock required for the switched capacitor resistance block.
- A switched capacitor resistance block used to replicate an external resistor on chip.

Built-in pullup and pulldown resistors are used as part of the protocol signaling.

Apart from this, the PHY also contains circuitry that protects it from an accidental 5 V short on the DP and DM lines.

LS/FS Single-Ended Receivers

In addition to the differential receiver, there is a single-ended receiver (SE–, SE+) for each of the two data lines D+/-. The main purpose of the single-ended receivers is to qualify the D+ and D– signals in the FS/LS modes of operation.

LS/FS Differential Receiver

A differential input receiver (RX) retrieves the LS/FS differential data signaling. The differential voltage on the line is converted into digital data by a differential comparator on DP/DM. This data is then sent to a clock and data recovery circuit, which recovers the clock from the data. In an additional serial mode, the differential data is directly output on the RXRCV pin.

LS/FS Transmitter

The USB transceiver (TX) uses a differential output driver to drive the USB data signal D+/– onto the USB cable. The outputs of the driver support 3-state operation to achieve bidirectional half-duplex transactions.

HS Differential Receiver

The HS receiver consists of the following blocks:

- A differential input comparator to receive the serial data
- A squelch detector to qualify the received data
- An oversampler-based clock data recovery scheme followed by a NRZI decoder, bit unstuffing, and serial-to-parallel converter to generate the UTMI DATAOUT

HS Differential Transmitter

The HS transmitter is always operated on the UTMI parallel interface. The parallel data on the interface is serialized, bit-stuffed, NRZI-encoded, and transmitted as a DC output current on DP or DM depending on the data. Each line has an effective $22.5-\Omega$ load to ground, which generates the voltage levels for signaling.

A disconnect detector is also part of the HS transmitter. A disconnect on the far end of the cable causes the impedance seen by the transmitter to double, thereby doubling the differential amplitude seen on the DP and DM lines.

UART Transceiver

In this mode, the ULPI data bus is redefined as a 2-pin UART interface, which exchanges data through a direct access to the FS/LS analog transmitter and receiver.

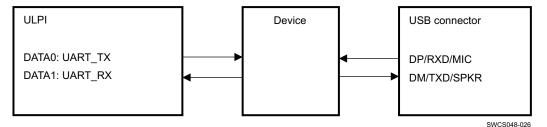


Figure 25. USB UART Data Flow

*暨椅***P\$65921"供应商

The OTG block integrates three main functions:

- The USB plug detection function on VBUS and ID
- The ID resistor detection
- The VBUS level detection

Charger Detection

To support Battery Charging Specification v1.0 [BCS v1.1], a charger detection module is included in the TPS65921 USB module.

The detection mechanism aims distinguishing several types of power sources that can be connected on VBUS line:

- Dedicated charger port
- Standard host port
- Charging host port

The hardware includes:

- A dedicated voltage referenced pullup on DP line
- A dedicated current controlled pulldown on DM line
- A detection comparator on DM line
- A control/detection state-machine including timers

Additional circuitry is added on DP/DM respectively for data line symmetry (required for HS operation) and for possible future extension

ID pin status detection (as defined per OTG v1.3 standard) and DP/DM single-ended receivers (as defined per USB v2.0 standard) are also used to determine the type of device plugged on the USB connector.

For details on the detection mechanism, refer to [BCS v1.1] (1).

The charging detection feature has two modes (description of each mode follows):

- 1. Software CTL mode: Software has direct control of current source and USB charger detection comparator on DP/DM (enabled when USB_SW_CTRL_EN=1) using USB_CHRG_CTRL registers bits.
- 2. Software FSM mode: Software can start and stop USB charger detection state-machine.

For both modes, DPPULLDOWN and DMPULLDOWN bits in OTG_CTRL register are 1 by default. This can cause errors in charger detection. Therefore, both bits must be cleared to 0 before software begins charger detection sequence.

1- Software CTL Mode (Manual detection):

When in this mode the charger detection circuitry is fully under control of software. Refer to POWER_CONTROL register bits as to how to control the detection circuitry. Conditions:

- The TPS65921 device is powered and is in active mode.
- USB_SW_CHRG_CTRL_EN = 1, register bit set by the software
- USB_CHG_DET_EN_SW = 1, register bit set by the software

Control the USB_SW_CHRF_CTRL register to achieve charger detection.

2- Software FSM Mode (Automatic detection):

The TPS65921 also supports automated battery charger detection through the USB battery charger detection FSM in Figure 26 while the chip is in active mode. This mode is set by software using the SW_USB_DET bit. When in this mode, the automated charger detection finite state-machine (FSM) is enabled. Refer to the diagram for details.

Conditions:

- The TPS65921 device is powered and is in active mode.
- USB_HW_CHRG_DET_EN = 1

See the Register Map for more details.

www.ti.com

SWERNARD OCTOBER 2010

The TPS65921 device also supports automated data contact detection in the FSM through the DATA_CONTACT_DET_EN bit which should be set at the same time as SW_USB_DET above, before setting SW_CONTROL bit. This enables a block of the FSM, which performs data contact detect for a maximum of DCD_TIMEOUT before automatically skipping to charger detection.

See Figure 26,USB Battery Charger FSM, for details of how context is stored if SW_CONTROL bit is set while in software FSM mode.

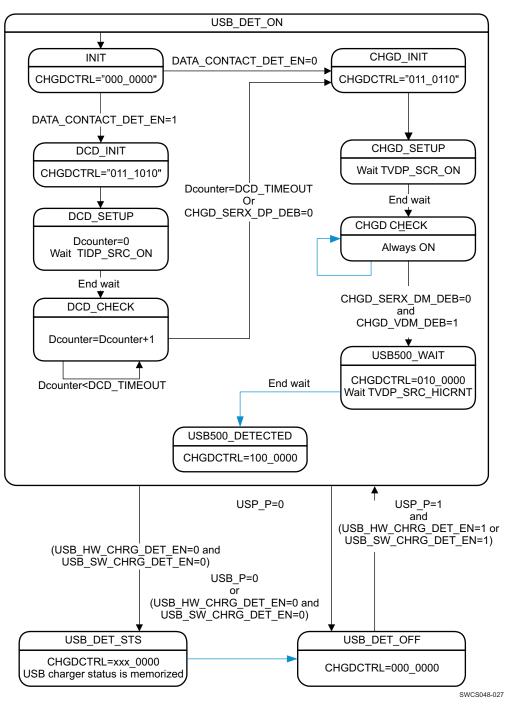


Figure 26. USB Battery Charger Detection FSM

USB charger detection status bit definition:

- USBVBUS_PRES: Detect presence of valid VBUS. Comparator output is debounced for DEBVBUS_TIME (minimum 10 ms) on CKCHG and generates a USB_P signal. USB_P is computed only if a battery presence is detected.
- USBCHRG_PRES: Detect presence of USB charger on DP/DM. The feature is enabled through the USB_DET_EN signal, then USBPHY performs checks on DP/DM and return status USB_DET_RESULT:
 - 1 : USB 500-mA charger is detected.
 - 0: USB 100-mA charger is detected.
- USB_DET_STATUS: 500-mA/100-mA USB charger detect presence comparator output is debounced during DEBUSBCHG_TIME (minimum 20 ms) on CKCHG, debounced signal is USB_DET_RESULT (set to 1 in case of 500-mA charger)
- Two signals are the result of the charger detection state machine:
 - USB100_P: Valid 100-mA charger (VBUS supplier) is detected.
 - USB500_P: Valid 500-mA charger (USB charger) is detected.

USB Battery Charger FSM

FSM Control Signals

The FSM uses the control signals CHGDCTRL[6:0] described below to control and observe battery charger detection.

When the SW_CONTROL bit is set to 1, the current context of the FSM and the state of charger detection is latched in POWER_CONTROL register bits HWDETECT, DP_VSRC_EN, VDAT_DET, and DET_COMP, after which FSM control signals CHGDCTRL[6:0] are ignored, and charger detection hardware and the CHGR_DET pin are controlled by the software.

The CHGD_IDP_SRC_EN bit is not latched when the SW_CONTROL bit is set (for example, if the FSM is performing data-contact detection at the time the SW_CONTROL is set to 1, the CHGD_IDP_SRC_EN bit is unchanged — its default value is 0).

CONTROL SIGNAL	CONTROL SIGNAL	DESCRIPTION	TYPE
Bit(6)	USB500_P	500-mA USB charging can be enabled	Input
Bit(5)	USB100_P	100-mA USB charging can be enabled	Input
Bit(4)	CHGD_DET_EN	Enable charger detection (used to enable CHGD IBIAS block)	Output
Bit(3)	CHGD_IDP_SRC_EN	Enable IDP_SRC and RDM_DWN	Output
Bit(2)	CHGD_VDP_SRC_EN	Enable VDP_SRC buffer, IDM_SINK, and VDAT_REF_DM comp	Output
Bit(1)	CHGD_SERX_EN	Enable SERX comparators on DP and DM	Output
Bit(0)	Reserved	Reserved	Output

Table 14 USB Charger Detect ESM I/O Control Signals

Table 14 shows control signals used to control the charger detection analog block from the FSM. The bit number in the left-handed column indicates control bit position used in the charger detection state-machine. Both SERX comparator outputs (CHGD_SERX_DP, CHGD_SERX_DM) are available for register read in the VENDOR_SPECIFIC3 register.

State: Control:	CHGDCTRL[6:0]	=	DCD_INIT 011 1010
Bit(6):	USB500 P		011_1010
Bit(5):	USB100 P	=	1
Bit(4):	CHGD_DET_EN	=	1
Bit(3):	CHGD_IDP_SRC_EN	=	1

Evomplo

SWESPARE MARCH 2010 HREVISED OCTOBER 2010

Bit(2):	CHGD_VDP_SRC_EN
Bit(1):	CHGD_SERX_EN
Bit(0) · Reserved - 0	

Bit(0): Reserved = 0

MADC

The Monitoring Analog-to-Digital Convertor (MADC) enables the host processors to monitor analog signals using Analog-to-Digital Conversion (ADC). After the conversion is complete, the host processor reads the results of the conversion through the inter-integrated circuit (I²C) interface.

The MADC has the following features:

- 10-bit ADC
- External input (ADCIN0)
- Internal inputs (VBUS, backup battery, and battery voltage)
- · MADC resource shared among multiple users, including system host processors and the internal USB
- Four ways of starting analog-to-digital (ADC) conversion
- Quarter-bit accuracy if the averaging function is used for modem-initiated real-time (RT) conversion requests
- · Management of potential concurrent conversion requests and priority between different resource users
- Interrupt signal to the primary interrupt handler (PIH) module at the end-of-sequence of conversions
- Averaging feature to sample the input channel on four consecutive conversion cycles instead of once, and to provide the average value of four conversions

Because the MADC is shared by users, there are four ways to start the ADC conversion. Three of these requests can be triggered by external host processors, and one request is issued by USB:

- Hardware or RT conversion request: This request is initiated by the external host processor to request RT signal conversion. This conversion request is most useful when tied to a modem processor request for battery voltage level, in synchronization with a signal frame boundary. The host processor can request conversion on all ADC input channels using this conversion request.
- SW1 software conversion request: This request can be initiated by the first external host processor to request non-RT conversions. This request is also called an asynchronous or GP conversion (GPC) request.
- SW2 software conversion request: This request can be initiated by the second external host processor to request non-RT conversions. This request is also called an asynchronous or GPC request.
- USB conversion request: This is a GPC request triggered by the USB through TPS65921 internal signals. This conversion request is for the ADCIN12 channel.

It is possible to delay the conversion by programming the acquisition time (ACQUISITION register).

JTAG Interfaces

The TPS65921 JTAG TAP controller handles standard IEEE JTAG interfaces. This section describes the timing requirements for the tools used to test the TPS65921 power management.

The JTAG/TAP module provides a JTAG interface according to IEEE Std1149.1a. This interface uses the four I/O pins TMS, TCK, TDI, and TDO. The TMS, TCK, and TDI inputs contain a pullup device, which makes their state high when they are not driven. The output TDO is a 3-state output, which is high impedance except when data are shifted between TDI and TDO.

- TCK is the test clock signal.
- TMS is the test mode select signal.
- TDI is the scan path input.
- TDO is the scan path output.

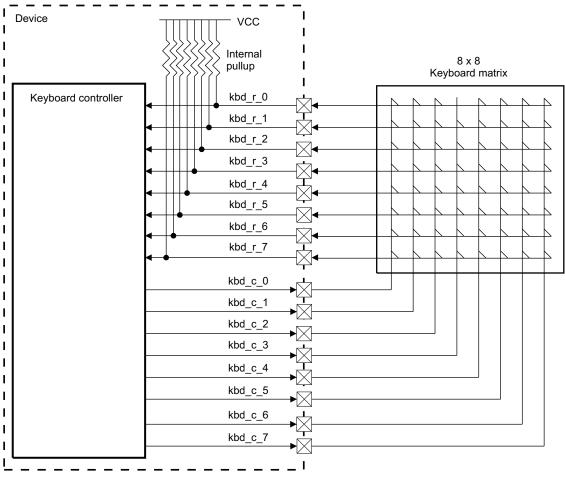
TMS and TDO are multiplexed at the top level with the CPIO0 and CPIO1 pins. The dedicated external TEST pin switches from functional mode (GPIO0/GPIO1) to JTAG mode (TMS/TDO). The JTAG operations are controlled by a state-machine that follows the IEEE Std1149.1a state diagram. This state-machine is reset by the TPS65921 internal power-on reset. A test mode is selected by writing a 6-bit word (instruction) into the instruction register and then accessing the related data register.

=

_

0

1


<u>₩豐簡¶P\$65921"供应商</u>

Keyboard

The keyboard is connected to the chip using:

- KBR (7:0) input pins for row lines
- KBC (7:0) output pins for column lines

Figure 27 shows the keyboard connection.

SWCS048-028

Figure 27. Keyboard Connection

When a key button of the keyboard matrix is pressed, the corresponding row and column lines are shorted together. To allow key press detection, all input pins (KBR) are pulled up to VCC and all output pins (KBC) driven to a low level.

Any action on a button generates an interrupt to the sequencer.

The decoding sequence is written to allow detection of simultaneous press actions on several key buttons.

The keyboard interface can be used with a smaller keyboard area than 8×8 . To use a 6×6 keyboard, KBR(6) and KBR(7) must be tied high to prevent any scanning process distribution.

www.ti.com

PACKAGING INFORMATION

Package Information vs. Registers Mapping

FACTDATA0 and FACTDATA1 registers are customer-dedicated registers, which are used to store package information and all other informations needed by the client. These registers are set by EEPROM bits.

Table 15. TPS65921 Nomenclature Description

FIELDS	MEANING
Ρ	Marking used to note prototype (X), preproduction (P), or qualified/production device (Blank) ⁽¹⁾
A	Mask set version descriptor (initial silicon = BLANK, first silicon revision = A, second silicon revision = $B,$) ⁽²⁾
YM	Year month
LLLLS	Lot code
\$	Fab planning code

(1) Blank in the symbol or part number are collapsed so there are no gaps between characters.

Initial silicon version is ES1.0; first revision can be named ES2.0, ES1.1, or ES1.01 depending on the level of change. (2)NOTE: Device name maximum is 10 characters.

Thermal Characteristics

Table 16. TPS65921 Thermal Resistance Characteristics

Package	θ _{JA} (°C/W)	θ յթ(°C/W)	θ _{JC(top)} (°C/W)	Board Type
TPS65921ZQZ	46	17	20 ⁽¹⁾	2S2P ⁽²⁾

Not applicable. Because the POP package has a memory package on top, no heat sink can be used. (1)

The board types are defined by JEDEC (reference JEDEC standard JESD51-9, Test Board for Area Array Surface Mount Package (2)Thermal Measurements).

www.ti.com

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Pe
TPS65921BZQZ	ACTIVE	BGA MICROSTAR JUNIOR	ZQZ	120	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260
TPS65921BZQZR	ACTIVE	BGA MICROSTAR JUNIOR	ZQZ	120	2000	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new **PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.

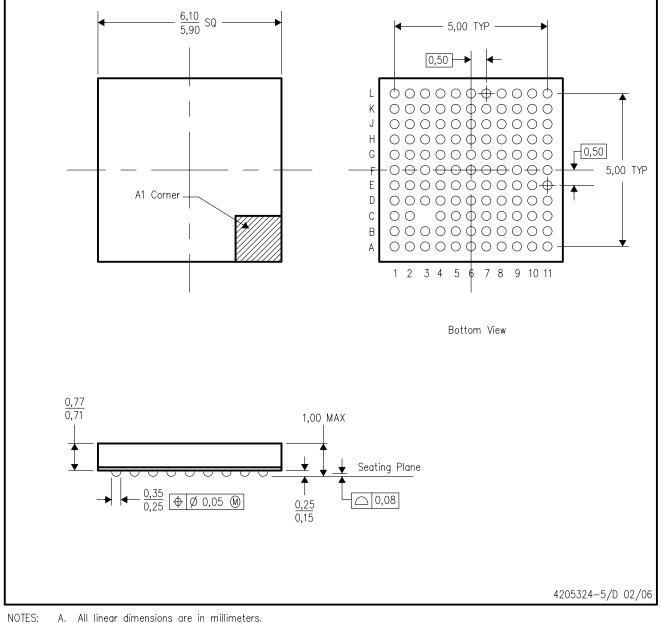
OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www. information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retard in homogeneous material)


⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information but may not have conducted destructive testing or chemical ar TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Cu

ZQZ (S-PBGA-N120)

PLASTIC BALL GRID ARRAY

- NOTES: Α.
 - Β. This drawing is subject to change without notice.
 - Falls within JEDEC MO-225 C.
 - D. This package is lead-free.

查询"TPS65921"供应商

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DLP® Products	www.dlp.com	Communications and Telecom	www.ti.com/communications
DSP	dsp.ti.com	Computers and Peripherals	www.ti.com/computers
Clocks and Timers	www.ti.com/clocks	Consumer Electronics	www.ti.com/consumer-apps
Interface	interface.ti.com	Energy	www.ti.com/energy
Logic	logic.ti.com	Industrial	www.ti.com/industrial
Power Mgmt	power.ti.com	Medical	www.ti.com/medical
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Space, Avionics & Defense	www.ti.com/space-avionics-defense
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video and Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless-apps

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2010, Texas Instruments Incorporated