

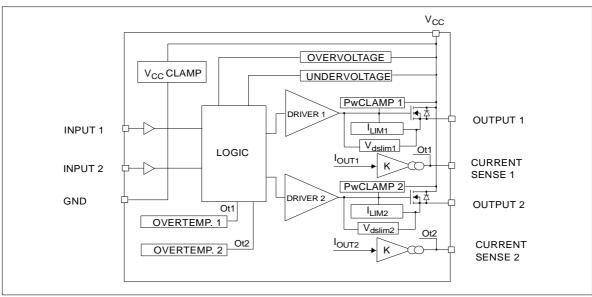
VND600PEP

DOUBLE CHANNEL HIGH SIDE SOLID STATE RELAY

TARGET SPECIFICATION

TYPE	R _{DS(on)}	I _{lim}	V _{CC}
VND600PEP	30mΩ	25A	36V

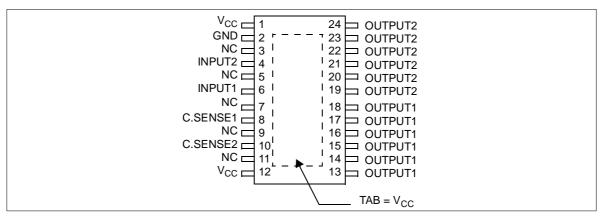
- DC SHORT CIRCUIT CURRENT: 25A
- CMOS COMPATIBLE INPUTS
- PROPORTIONAL LOAD CURRENT SENSE
- UNDERVOLTAGE AND OVERVOLTAGE SHUT-DOWN
- OVERVOLTAGE CLAMP
- THERMAL SHUT-DOWN
- **CURRENT LIMITATION**
- VERY LOW STAND-BY POWER DISSIPATION
- PROTECTION AGAINST: LOSS OF GROUND AND LOSS OF V_{CC}
- REVERSE BATTERY PROTECTION (*)


DESCRIPTION

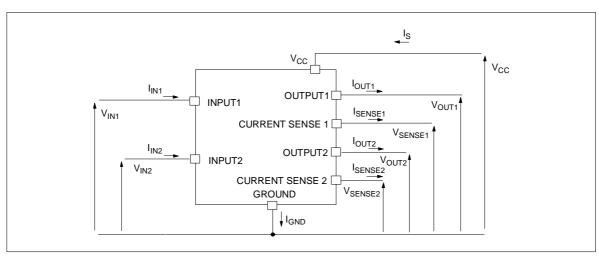
The VND600PEP is a monolithic device made using STMicroelectronics VIPower M0-3 technology. It is intended for driving resistive or inductive loads with one side connected to ground. Active V_{CC} pin voltage clamp protects the

device against low energy spikes (see ISO7637 transient compatibility table). This device has two channels in high side configuration; each channel has an analog sense output on which the sensing current is proportional (according to a known ratio) to the corresponding load current. Built-in thermal shut-down and outputs current limitation protect the chip from over temperature and short circuit. Device turns off in case of ground pin disconnection.

BLOCK DIAGRAM



(*) See application schematic at page 8


ABSOLUTE MAXIMUM RATING

Symbol	Parameter	Value	Unit
V _{CC}	DC supply voltage	41	V
-V _{CC}	Reverse supply voltage	-0.3	V
- I _{GND}	DC reverse ground pin current	-200	mA
l _{OUT}	Output current	Internally limited	Α
I _R	Reverse output current	-21	Α
I _{IN}	Input current	+/- 10	mA
W	Current sense maximum voltage	-3	V
V _{CSENSE}	Current sense maximum voltage	+15	V
	Electrostatic Discharge (Human Body Model: R=1.5KΩ; C=100pF)		
	- INPUT	4000	V
V _{ESD}	- CURRENT SENSE	2000	V
	- OUTPUT	5000	V
	- V _{CC}	5000	V
P _{tot}	Power dissipation at T _c =25°C	96	W
T _i	Junction operating temperature	Internally limited	°C
T _c	Case operating temperature	-40 to 150	°C
T _{STG}	Storage temperature	-55 to 150	°C

CONNECTION DIAGRAM (TOP VIEW)

CURRENT AND VOLTAGE CONVENTIONS

THERMAL DATA

Symbol	Parameter		Value	Unit
R _{thj-case} (1)	Thermal resistance junction-case	(MAX)	1.8	°C/W
R _{thj-case} (2)	Thermal resistance junction-case	(MAX)	1.3	°C/W
R _{thj-amb}	Thermal resistance junction-ambient	(MAX)	60 (*)	°C/W

(*) When mounted on a standard single-sided FR-4 board with 1cm $^{\!2}$ of Cu (at least 35 μm thick).

Note: (1) one channel ON - (2) two channels ON $\,$

ELECTRICAL CHARACTERISTICS (8V<V $_{CC}$ <36V; -40°C<T $_{j}$ <150°C; unless otherwise specified) (Per each channel)

POWER

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _{CC} (**)	Operating supply voltage		5.5	13	36	V
V _{USD} (**)	Undervoltage shutdown		3	4	5.5	V
V _{OV} (**)	Overvoltage shutdown		36			V
		I _{OUT} =5A; T _j =25°C			30	mΩ
R _{ON}	On state resistance	I _{OUT} =5A; T _j =150°C			60	$m\Omega$
		I _{OUT} =3A; V _{CC} =6V			100	$m\Omega$
V _{clamp}	Clamp Voltage	I _{CC} =20mA (see note 3)	41	48	55	V
		Off State; V _{CC} =13V; V _{IN} =V _{OUT} =0V		12	40	μΑ
I _S (**)	Supply current	Off State; V _{CC} =13V; V _{IN} =V _{OUT} =0V; T _j =25°C		12	25	μΑ
.5()	Cappiy carroin	On state; V _{IN} =5V; V _{CC} =13V; I _{OUT} =0A;				
		$R_{SENSE}=3.9k\Omega$			6	mA
I _{L(off1)}	Off State Output Current	V _{IN} =V _{OUT} =V _{SENSE} =0V	0		50	μΑ
I _{L(off2)}	Off State Output Current	V _{IN} =V _{SENSE} =0V; V _{OUT} =3.5V	-75		0	μΑ
I _{L(off3)}	Off State Output Current	$V_{IN}=V_{OUT}=V_{SENSE}=0V; V_{CC}=13V; T_j=125^{\circ}C$			5	μΑ
I _{L(off4)}	Off State Output Current	V _{IN} =V _{OUT} =V _{SENSE} =0V; V _{CC} =13V; T _j =25°C			3	μΑ

SWITCHING (V_{CC}=13V)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
t _{d(on)}	Turn-on delay time	R _L =2.6Ω (see figure 1)		30		μs
t _{d(off)}	Turn-on delay time	R _L =2.6Ω (see figure 1)		30		μs
(dV _{OUT} /dt) _{on}	Turn-on voltage slope	R _L =2.6Ω (see figure 1)		See relative diagram		V/µs
(dV _{OUT} /dt) _{off}	Turn-off voltage slope	R_L =2.6 Ω (see figure 1)		See relative diagram		V/μs

PROTECTIONS

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
	DC short circuit current	V _{CC} =13V	25	40	70	Α
l _{lim}	DC Short circuit current	5.5V <v<sub>CC<36V</v<sub>			70	Α
т.	Thermal shut-down		150	175	200	°C
T _{TSD}	temperature		150	173	200	
T _R	Thermal reset temperature		135			°C
T _{HYST}	Thermal hysteresis		7	15		°C
V_{demag}	Turn-off output voltage clamp	I _{OUT} =2A; V _{IN} =0V; L=6mH	V _{CC} -41	V _{CC} -48	V _{CC} -55	V
V _{ON}	Output voltage drop limitation	I _{OUT} =0.5A; T _j = -40°C+150°C		50		mV

(**) Per device.

ELECTRICAL CHARACTERISTICS (continued)

CURRENT SENSE (9V \leq V_{CC} \leq 16V) (See figure 1)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
K ₁	I _{OUT} /I _{SENSE}	I_{OUT1} or I_{OUT2} =0.5A; V_{SENSE} =0.5V; other channels open; T_j = -40°C150°C	3300	4400	6000	
dK ₁ /K ₁	Current Sense Ratio Drift	I_{OUT1} or I_{OUT2} =0.5A; V_{SENSE} =0.5V; other channels open; T_j = -40°C150°C	-10		+10	%
K ₂	lout/Isense	I_{OUT1} or I_{OUT2} =5A; V_{SENSE} =4V; other channels open; T_j =-40°C T_j =25°C150°C	4200 4400	4900 4900	6000 5750	
dK ₂ /K ₂	Current Sense Ratio Drift	I _{OUT1} or I _{OUT2} =5A; V _{SENSE} =4V; other channels open; T _i =-40°C150°C	-6		+6	%
K ₃	lout ^{/I} sense	I _{OUT1} or I _{OUT2} =15A; V _{SENSE} =4V; other channels open; T _j =-40°C T _i =25°C150°C	4200 4400	4900 4900	5500 5250	
dK ₃ /K ₃	Current Sense Ratio Drift	I _{OUT1} or I _{OUT2} =15A; V _{SENSE} =4V; other channels open; T _i =-40°C150°C	-6		+6	%
V.	Max analog sense	V_{CC} =5.5V; $I_{OUT1,2}$ =2.5A; R_{SENSE} =10k Ω	2			V
V _{SENSE1,2}	output voltage	V_{CC} >8V, $I_{OUT1,2}$ =5A; R_{SENSE} =10k Ω	4			V
V _{SENSEH}	Analog sense output voltage in overtemperature condition	V_{CC} =13V; R_{SENSE} =3.9k Ω		5.5		V
R _{VSENSEH}	Analog sense output impedance in overtemperature condition	V _{CC} =13V; T _j >T _{TSD} ; All Channels Open		400		Ω
t _{DSENSE}	Current sense delay response	to 90% I _{SENSE} (see note 4)			500	μs

LOGIC INPUT (Channels 1,2)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _{IL}	Input low level voltage				1.25	V
I _{IL}	Low level input current	V _{IN} =1.25V	1			μΑ
V _{IH}	Input high level voltage		3.25			V
I _{IH}	High level input current	V _{IN} =3.25V			10	μΑ
V _{I(hyst)}	Input hysteresis voltage		0.5			V
V.	Input clamp voltage	I _{IN} =1mA	6	6.8	8	V
V _{ICL}	input clamp voltage	I _{IN} =-1mA		-0.7		V

Note 3: V_{clamp} and V_{OV} are correlated. Typical difference is 5V.

Note 4: current sense signal delay after positive input slope.

Note: Sense pin doesn't have to be left floating.

TRUTH TABLE (per channel)

CONDITIONS	INPUT	OUTPUT	SENSE
Normal operation	L	L	0
Nomial operation	Н	Н	Nominal
Overtemperature	L	L	0
Overtemperature	Н	L	V _{SENSEH}
Undervoltage	L	L	0
Ondervoltage	Н	L	0
Overvoltage	L	L	0
Overvoitage	Н	L	0
	L	L	0
Short circuit to GND	Н	L	$(T_j < T_{TSD}) 0$
	Н	L	(T _j >T _{TSD}) V _{SENSEH}
Short circuit to V	L	Н	0
Short circuit to V _{CC}	Н	Н	< Nominal
Negative output voltage clamp	L	L	0

ELECTRICAL TRANSIENT REQUIREMENTS

ISO T/R 7637/1	TEST LEVELS				
Test Pulse	I	II	III	IV	Delays and Impedance
1	-25 V	-50 V	-75 V	-100 V	2 ms 10 Ω
2	+25 V	+50 V	+75 V	+100 V	0.2 ms 10 Ω
3a	-25 V	-50 V	-100 V	-150 V	$0.1~\mu s$ $50~\Omega$
3b	+25 V	+50 V	+75 V	+100 V	$0.1~\mu s~50~\Omega$
4	-4 V	-5 V	-6 V	-7 V	100 ms, 0.01 Ω
5	+26.5 V	+46.5 V	+66.5 V	+86.5 V	400 ms, 2 Ω

ISO T/R 7637/1		TEST LEVE	S RESULTS	
Test Pulse	I	II	III	IV
1	С	С	С	С
2	С	С	С	С
3a	С	С	С	С
3b	С	С	С	С
4	С	С	С	С
5	С	Е	Е	E

CLASS	CONTENTS
С	All functions of the device are performed as designed after exposure to disturbance.
Е	One or more functions of the device is not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device.

Figure 1: Switching Characteristics (Resistive load RL=2.6 Ω)

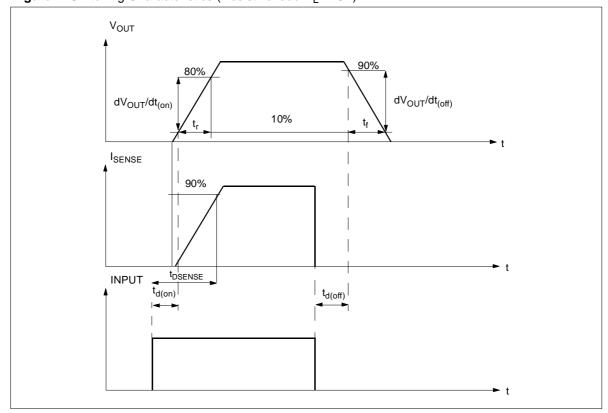
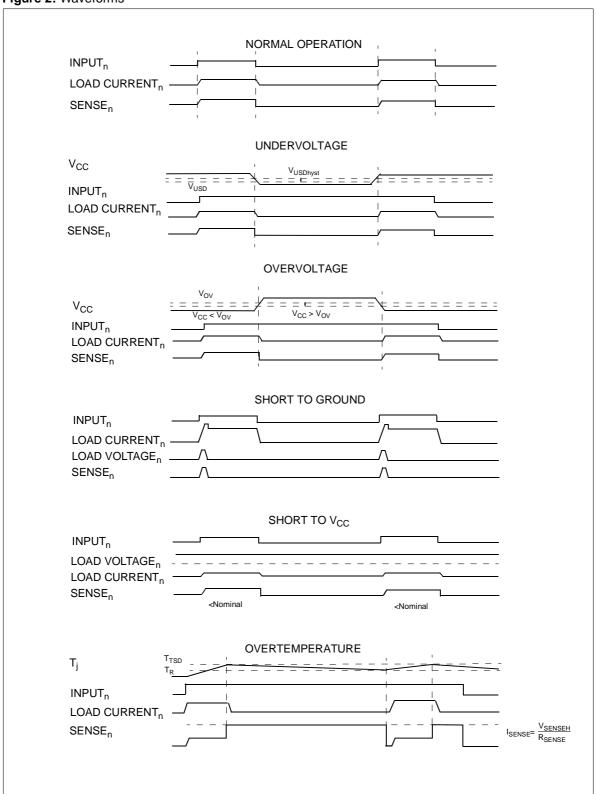
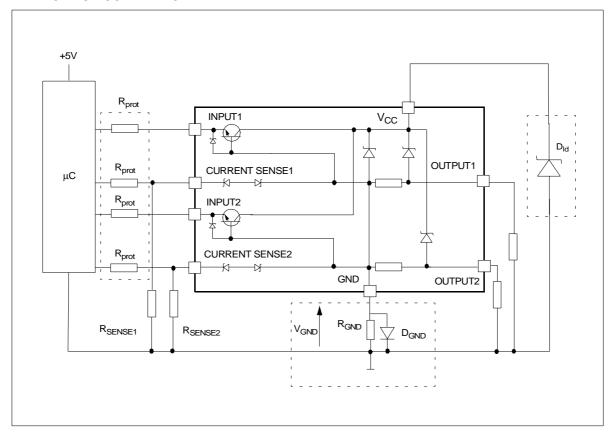




Figure 2: Waveforms

APPLICATION SCHEMATIC

GND PROTECTION NETWORK AGAINST REVERSE BATTERY

Solution 1: Resistor in the ground line (R_{GND} only). This can be used with any type of load.

The following is an indication on how to dimension the $R_{\mbox{\footnotesize{GND}}}$ resistor.

- 1) $R_{GND} \le 600 \text{mV} / I_{S(on)max}$.
- 2) $R_{GND} \ge (-V_{CC}) / (-I_{GND})$

where -I_{GND} is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device's datasheet.

Power Dissipation in R_{GND} (when $V_{CC}\!\!<\!\!0$: during reverse battery situations) is:

 $P_D = (-V_{CC})^2 / R_{GND}$

This resistor can be shared amongst several different HSD. Please note that the value of this resistor should be calculated with formula (1) where I_{S(on)max} becomes the sum of the maximum on-state currents of the different devices

Please note that if the microprocessor ground is not common with the device ground then the R_{GND} will produce a shift $(I_{S(on)max} \, ^* \, R_{GND})$ in the input thresholds and the status output values. This shift will vary depending on how many devices are ON in the case of several high side drivers sharing the same R_{GND} .

If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then the ST suggests to utilize Solution 2 (see below).

Solution 2: A diode (D_{GND}) in the ground line.

A resistor $(R_{GND}=1k\Omega)$ should be inserted in parallel to D_{GND} if the device will be driving an inductive load.

This small signal diode can be safely shared amongst several different HSDs. Also in this case, the presence of the ground network will produce a shift (≈600mV) in the input thresholds and the status output values if the microprocessor ground is not common with the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network.

Series resistor in INPUT and STATUS lines are also required to prevent that, during battery voltage transient, the current exceeds the Absolute Maximum Rating.

Safest configuration for unused INPUT and STATUS pin is to leave them unconnected.

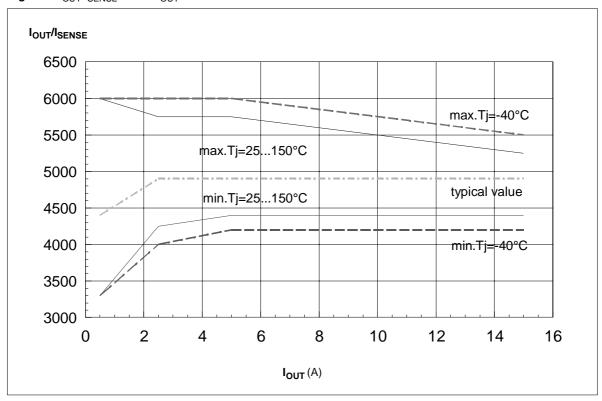
LOAD DUMP PROTECTION

 D_{ld} is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds V_{CC} max DC rating. The same applies if the device will be subject to transients on the V_{CC} line that are greater than the ones shown in the ISO T/R 7637/1 table.

μ C I/Os PROTECTION:

If a ground protection network is used and negative transient are present on the V_{CC} line, the control pins will be pulled negative. ST suggests to insert a resistor (R_{prot}) in line to prevent the μC I/Os pins to latch-up.

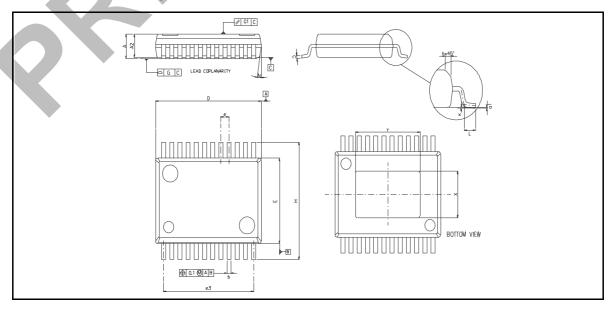
The value of these resistors is a compromise between the leakage current of μC and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of μC I/Os.


 $-V_{CCpeak}/I_{latchup} \le R_{prot} \le (V_{OH\mu C}-V_{IH}-V_{GND}) / I_{IHmax}$

Calculation example:

For V_{CCpeak}= - 100V and I_{latchup} \geq 20mA; V_{OHµC} \geq 4.5V 5k Ω \leq R_{prot} \leq 65k $\Omega.$

Recommended $R_{prot}\, value$ is $10 k\Omega.$


Figure 3: I_{OUT}/I_{SENSE} versus I_{OUT}

57

PowerSSO-24TM MECHANICAL DATA

DIM.	mm.		
	MIN.	ТҮР	MAX.
A	1.9		2.22
A2	1.9		2.15
a1	0		0.07
b	0.34	0.4	0.46
С	0.23		0.32
D	10.2		10.4
E	7.4		7.6
е		0.8	
e3		8.8	
G			0.1
G1			0.06
Н	10.1		10.5
h			0.4
L	0.55		0.85
N			10°
Х	3.9		4.3
Y	6.1		6.5

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

 $\ensuremath{\texttt{©}}$ 2003 STMicroelectronics - Printed in ITALY- All Rights Reserved.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com