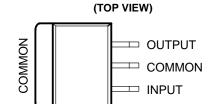

μΑ7800 SERIES POSITIVE-VOLTAGE REGULATORS

SLVS056J - MAY 1976 - REVISED MAY 2003

- 3-Terminal Regulators
- Output Current up to 1.5 A
- Internal Thermal-Overload Protection

KC (TO-220) PACKAGE (TOP VIEW)



High Power-Dissipation Capability

KTE PACKAGE

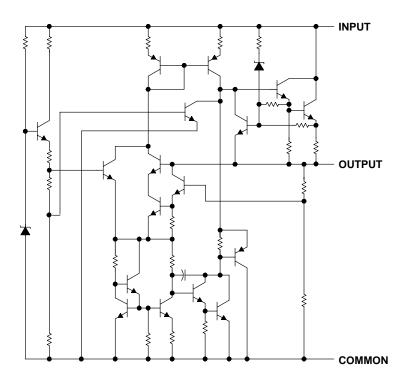
- Internal Short-Circuit Current Limiting
- Output Transistor Safe-Area Compensation

description/ordering information

This series of fixed-voltage integrated-circuit voltage regulators is designed for a wide range of applications. These applications include on-card regulation for elimination of noise and distribution problems associated with single-point regulation. Each of these regulators can deliver up to 1.5 A of output current. The internal current-limiting and thermal-shutdown features of these regulators essentially make them immune to overload. In addition to use as fixed-voltage regulators, these devices can be used with external components to obtain adjustable output voltages and currents, and also can be used as the power-pass element in precision regulators.

ORDERING INFORMATION

TJ	V _{O(NOM)} (V)	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING
		POWER-FLEX (KTE)	Reel of 2000	μΑ7805CKTER	μA7805C
	5	TO-220 (KC)	Tube of 50	μΑ7805CKC	A 700E C
		TO-220, short shoulder (KCS)	Tube of 20	μΑ7805CKCS	μA7805C
		POWER-FLEX (KTE)	Reel of 2000	μΑ7808CKTER	μA7808C
	8	TO-220 (KC)	Tube of 50	μΑ7808CKC	470000
		TO-220, short shoulder (KCS)	Tube of 20	μΑ7808CKCS	μA7808C
	10	POWER-FLEX (KTE)	Reel of 2000	μΑ7810CKTER	μΑ7810C
0°C to 125°C	10	TO-220 (KC)	Tube of 50	μΑ7810CKC	μΑ7810C
0 C to 125 C		POWER-FLEX (KTE)	Reel of 2000	μΑ7812CKTER	μA7812C
	12	TO-220 (KC)	Tube of 50	μΑ7812CKC	μΑ7812C
		TO-220, short shoulder (KCS)	Tube of 20	μΑ7812CKCS	μΑ/612C
		POWER-FLEX (KTE)	Reel of 2000	μΑ7815CKTER	μA7815C
	15	TO-220 (KC)	Tube of 50	μΑ7815CKC	A7945C
		TO-220, short shoulder (KCS)	Tube of 20	μΑ7815CKCS	μA7815C
	24	POWER-FLEX (KTE)	Reel of 2000	μΑ7824CKTER	μA7824C
	24	TO-220 (KC)	Tube of 50	μΑ7824CKC	μA7824C


[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

schematic

absolute maximum ratings over virtual junction temperature range (unless otherwise noted)†

Input voltage, V _I : μA7824C	40 V
All others	35 V
Operating virtual junction temperature, T _{.j.}	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C
Storage temperature range, T _{stq}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

package thermal data (see Note 1)

PACKAGE	BOARD	θЈС	θ JA
POWER-FLEX (KTE)	High K, JESD 51-5	3°C/W	23°C/W
TO-220 (KC/KCS)	High K, JESD 51-5	3°C/W	19°C/W

NOTE 1: Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.

recommended operating conditions

			MIN	MAX	UNIT
		μΑ7805C	7	25	
		μΑ7808C	10.5	25	
V Innutualiana	Input voltage	μΑ7810C	12.5	28	V
VI	Input voltage	μΑ7812C	14.5	30	V
		μΑ7815C	17.5	30	
		μΑ7824C	27	38	
lo	Output current			1.5	Α
TJ	Operating virtual junction temperature	μΑ7800C series	0	125	°C

electrical characteristics at specified virtual junction temperature, $V_{\rm I}$ = 10 V, $I_{\rm O}$ = 500 mA (unless otherwise noted)

PARAMETER	TEST COM	NITIONE	т _J †	μ	A7805C		UNIT
PARAMETER	TEST CONL	TEST CONDITIONS			TYP	MAX	UNII
Output voltage	$I_O = 5$ mA to 1 A, $V_I = 7$ V to 20 V, $P_D \le 15$ W		25°C	4.8	5	5.2	V
Output voltage			0°C to 125°C	4.75		5.25	V
Input voltage regulation	V _I = 7 V to 25 V		25°C		3	100	mV
Input voltage regulation	V _I = 8 V to 12 V		25 C		1	50	IIIV
Ripple rejection	$V_I = 8 V \text{ to } 18 V,$	f = 120 Hz	0°C to 125°C	62	78		dB
Output valtage regulation	I _O = 5 mA to 1.5 A	25°C		15	100	mV	
Output voltage regulation	$I_O = 250 \text{ mA to } 750 \text{ mA}$	25-0		5	50	IIIV	
Output resistance	f = 1 kHz		0°C to 125°C		0.017		Ω
Temperature coefficient of output voltage	I _O = 5 mA		0°C to 125°C		-1.1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz		25°C		40		μV
Dropout voltage	I _O = 1 A		25°C		2		V
Bias current			25°C		4.2	8	mA
Dies surrent change	V _I = 7 V to 25 V		000 / 40500			1.3	A
Bias current change	I _O = 5 mA to 1 A	0°C to 125°C			0.5	mA	
Short-circuit output current			25°C		750		mA
Peak output current					2.2		Α

[†] Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

electrical characteristics at specified virtual junction temperature, V_I = 14 V, I_O = 500 mA (unless otherwise noted)

PARAMETER	TEST CONDITIONS	_ +	μ	A7808C		UNIT
PARAMETER	TEST CONDITIONS	TJ [†]	MIN	TYP	MAX	UNII
Output voltage $I_O = 5 \text{ mA to 1 A}, V_I = 10.5 \text{ V to 23 V}$		25°C	7.7	8	8.3	V
Output voltage	P _D ≤ 15 W	0°C to 125°C	7.6		8.4	V
Input voltage regulation	V _I = 10.5 V to 25 V	25°C		6	160	mV
Input voltage regulation	V _I = 11 V to 17 V	25 C		2	80	IIIV
Ripple rejection	V _I = 11.5 V to 21.5 V, f = 120 Hz	0°C to 125°C	55	72		dB
Output valtage regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}$	25°C		12	160	mV
Output voltage regulation	I _O = 250 mA to 750 mA	25°C		4	80	IIIV
Output resistance	f = 1 kHz	0°C to 125°C		0.016		Ω
Temperature coefficient of output voltage	$I_O = 5 \text{ mA}$	0°C to 125°C		-0.8		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	25°C		52		μV
Dropout voltage	I _O = 1 A	25°C		2		V
Bias current		25°C		4.3	8	mA
Pigg gurrent change	V _I = 10.5 V to 25 V	0°C to 125°C			1	mA
Bias current change I _O = 5 mA to 1 A		0 0 10 125 0			0.5	IIIA
Short-circuit output current		25°C		450		mA
Peak output current		25°C		2.2		Α

[†] Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

electrical characteristics at specified virtual junction temperature, V_I = 17 V, I_O = 500 mA (unless otherwise noted)

PARAMETER	TEST COND	NTIONE	т _J †	μ	A7810C		UNIT
PARAMETER	IESI CONL	TEST CONDITIONS			TYP	MAX	UNII
Output valtege $I_O = 5 \text{ mA to 1 A}, V_I = 12.5 \text{ V to 25}$		V _I = 12.5 V to 25 V,	25°C	9.6	10	10.4	V
Output voltage	$P_D \le 15 \text{ W}$		0°C to 125°C	9.5	10	10.5	V
Input voltage regulation	V _I = 12.5 V to 28 V		25°C		7	200	mV
Input voltage regulation	V _I = 14 V to 20 V		25°C		2	100	IIIV
Ripple rejection	V _I = 13 V to 23 V,	f = 120 Hz	0°C to 125°C	55	71		dB
Output valtage regulation	I _O = 5 mA to 1.5 A	25°C		12	200	m)/	
Output voltage regulation	I _O = 250 mA to 750 mA	25°C		4	100	mV	
Output resistance	f = 1 kHz		0°C to 125°C		0.018		Ω
Temperature coefficient of output voltage	$I_O = 5 \text{ mA}$		0°C to 125°C		-1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz		25°C		70		μV
Dropout voltage	I _O = 1 A		25°C		2		V
Bias current			25°C		4.3	8	mA
Dies surrent shangs	V _I = 12.5 V to 28 V		0°C to 125°C			1	mA
Bias current change	I _O = 5 mA to 1 A		0-0 10 125-0			0.5	mA
Short-circuit output current			25°C		400		mA
Peak output current			25°C		2.2		Α

[†] Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output.

electrical characteristics at specified virtual junction temperature, V_I = 19 V, I_O = 500 mA (unless otherwise noted)

DADAMETED	TEST COMPITIONS	_ +	μ	A7812C		UNIT
PARAMETER	TEST CONDITIONS	TJ [†]	MIN	TYP	MAX	UNII
Output voltage	$I_O = 5 \text{ mA to 1 A}, \qquad V_I = 14.5 \text{ V to 27 V},$	25°C	11.5	12	12.5	V
Output voltage	$P_D \le 15 \text{ W}$	0°C to 125°C	11.4		12.6	V
Input voltage regulation	V _I = 14.5 V to 30 V	25°C		10	240	mV
Input voltage regulation	V _I = 16 V to 22 V	25.0		3	120	IIIV
Ripple rejection	V _I = 15 V to 25 V, f = 120 Hz	0°C to 125°C	55	71		dB
Output valtage regulation	I _O = 5 mA to 1.5 A	25°C		12	240	\/
Output voltage regulation	I _O = 250 mA to 750 mA	25.0		4	120	mV
Output resistance	f = 1 kHz	0°C to 125°C		0.018		Ω
Temperature coefficient of output voltage	$I_O = 5 \text{ mA}$	0°C to 125°C		-1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	25°C		75		μV
Dropout voltage	I _O = 1 A	25°C		2		V
Bias current		25°C		4.3	8	mA
Dies surrent change	V _I = 14.5 V to 30 V				1	mA
Bias current change	I _O = 5 mA to 1 A	0°C to 125°C	0.5		IIIA	
Short-circuit output current		25°C		350		mA
Peak output current		25°C		2.2		Α

[†] Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output.

electrical characteristics at specified virtual junction temperature, V_I = 23 V, I_O = 500 mA (unless otherwise noted)

PARAMETER	TEST CONDITIONS	_ +	μ	A7815C	;	UNIT	
PARAMETER	TEST CONDITIONS	TJ [†]	MIN	TYP	MAX	UNIT	
Output voltage	$I_O = 5 \text{ mA to 1 A}, \qquad V_I = 17.5 \text{ V to 30 V},$	25°C	14.4	15	15.6	V	
Output voltage	$P_D \le 15 \text{ W}$	0°C to 125°C	14.25		15.75	V	
Input voltage regulation	V _I = 17.5 V to 30 V	25°C		11	300	mV	
input voltage regulation	V _I = 20 V to 26 V	25 C		3	150	IIIV	
Ripple rejection	$V_I = 18.5 \text{ V to } 28.5 \text{ V}, f = 120 \text{ Hz}$	0°C to 125°C	54	70		dB	
Output voltage regulation	$I_O = 5$ mA to 1.5 A	25°C		12	300	mV	
Output voltage regulation	I _O = 250 mA to 750 mA	25 C		4	150	111V	
Output resistance	f = 1 kHz	0°C to 125°C		0.019		Ω	
Temperature coefficient of output voltage	$I_O = 5 \text{ mA}$	0°C to 125°C		-1		mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz	25°C		90		μV	
Dropout voltage	I _O = 1 A	25°C		2		V	
Bias current		25°C		4.4	8	mA	
Bias current change	V _I = 17.5 V to 30 V	0°C to 125°C			1	mA	
Bias current change	I _O = 5 mA to 1 A	0.0 10 125.0			0.5	mA	
Short-circuit output current		25°C		230		mA	
Peak output current		25°C		2.1		Α	

[†] Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

electrical characteristics at specified virtual junction temperature, $V_I = 33 \text{ V}$, $I_O = 500 \text{ mA}$ (unless otherwise noted)

DADAMETED	TEST 60	NOITIONS	ΤJ [†]	μ	A7824C		LINIT
PARAMETER	IEST CO	TEST CONDITIONS			TYP	MAX	UNIT
Output voltage	I_O = 5 mA to 1 A, V_I = 27 V to 38 V, $P_D \le$ 15 W		25°C	23	24	25	V
Output voltage			0°C to 125°C	22.8		25.2	V
Input voltage regulation	V _I = 27 V to 38 V		25°C		18	480	mV
Input voltage regulation	V _I = 30 V to 36 V		25 C		6	240	IIIV
Ripple rejection	V _I = 28 V to 38 V,	f = 120 Hz	0°C to 125°C	50	66		dB
Output valtage regulation	I _O = 5 mA to 1.5 A	2500		12	480	m)/	
Output voltage regulation	I _O = 250 mA to 750 m	25°C		4	240	mV	
Output resistance	f = 1 kHz		0°C to 125°C		0.028		Ω
Temperature coefficient of output voltage	$I_O = 5 \text{ mA}$		0°C to 125°C		-1.5		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz		25°C		170		μV
Dropout voltage	I _O = 1 A		25°C		2		V
Bias current			25°C		4.6	8	mA
Pigg gurrent change	V _I = 27 V to 38 V		0°C to 125°C			1	mA
Bias current change I _O = 5 mA to 1 A		0 0 10 125 0	0.5		IIIA		
Short-circuit output current			25°C		150		mA
Peak output current		-	25°C		2.1		Α

[†] Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

APPLICATION INFORMATION

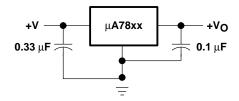


Figure 1. Fixed-Output Regulator

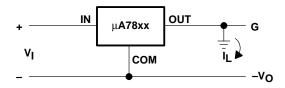
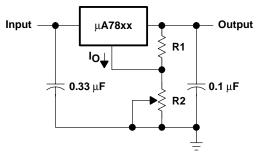



Figure 2. Positive Regulator in Negative Configuration (V_I Must Float)

NOTE A: The following formula is used when V_{XX} is the nominal output voltage (output to common) of the fixed regulator:

$$V_{O} = V_{xx} + \left(\frac{V_{xx}}{R1} + I_{Q}\right)R2$$

Figure 3. Adjustable-Output Regulator

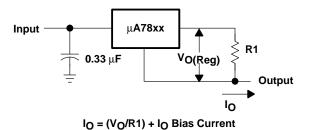


Figure 4. Current Regulator

APPLICATION INFORMATION

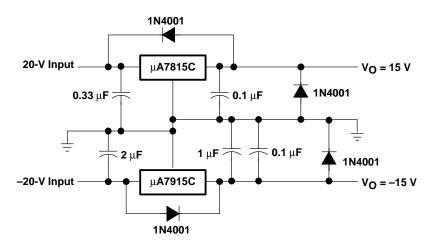


Figure 5. Regulated Dual Supply

operation with a load common to a voltage of opposite polarity

In many cases, a regulator powers a load that is not connected to ground but, instead, is connected to a voltage source of opposite polarity (e.g., operational amplifiers, level-shifting circuits, etc.). In these cases, a clamp diode should be connected to the regulator output as shown in Figure 6. This protects the regulator from output polarity reversals during startup and short-circuit operation.

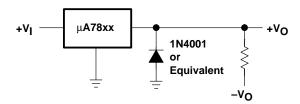


Figure 6. Output Polarity-Reversal-Protection Circuit

reverse-bias protection

Occasionally, the input voltage to the regulator can collapse faster than the output voltage. This can occur, for example, when the input supply is crowbarred during an output overvoltage condition. If the output voltage is greater than approximately 7 V, the emitter-base junction of the series-pass element (internal or external) could break down and be damaged. To prevent this, a diode shunt can be used as shown in Figure 7.

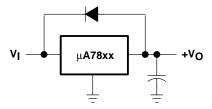


Figure 7. Reverse-Bias-Protection Circuit

PACKAGING INFORMATION

Orderable Devic	e Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
UA7805CKC	ACTIVE	TO-220	KC	3	50	None	Call TI	Level-1-220C-UNLIM
UA7805CKCS	ACTIVE	TO-220	KCS	3	50	None	Call TI	Level-NC-NC-NC
UA7805CKTER	ACTIVE	PFM	KTE	3	2000	None	Call TI	Level-1-220C-UNLIM
UA7805QKC	OBSOLETE	TO-220	KC	3		None	Call TI	Call TI
UA7805QKTE	OBSOLETE	PFM	KTE	3		None	Call TI	Call TI
UA7806CKC	OBSOLETE	TO-220	KC	3		None	Call TI	Call TI
UA7806CKTER	OBSOLETE	PFM	KTE	3		None	Call TI	Call TI
UA7806QKTE	OBSOLETE	PFM	KTE	3		None	Call TI	Call TI
UA7806QKTER	OBSOLETE	PFM	KTE	3		None	Call TI	Call TI
UA7808CKC	ACTIVE	TO-220	KC	3	50	None	Call TI	Level-1-220C-UNLIM
UA7808CKCS	ACTIVE	TO-220	KCS	3	50	None	Call TI	Level-NC-NC-NC
UA7808CKTER	ACTIVE	PFM	KTE	3	2000	None	Call TI	Level-1-220C-UNLIM
UA7808QKTE	OBSOLETE	PFM	KTE	3		None	Call TI	Call TI
UA7810CKC	ACTIVE	TO-220	KC	3	50	None	Call TI	Level-1-220C-UNLIM
UA7810CKCS	ACTIVE	TO-220	KCS	3	50	None	CU	Level-NC-NC-NC
UA7810CKTER	ACTIVE	PFM	KTE	3	2000	None	Call TI	Level-1-220C-UNLIM
UA7810QKTE	OBSOLETE	PFM	KTE	3		None	Call TI	Call TI
UA7812CKC	ACTIVE	TO-220	KC	3	50	None	Call TI	Level-1-220C-UNLIM
UA7812CKCS	ACTIVE	TO-220	KCS	3	50	None	Call TI	Level-NC-NC-NC
UA7812CKTER	ACTIVE	PFM	KTE	3	2000	None	Call TI	Level-1-220C-UNLIM
UA7812QKTE	OBSOLETE	PFM	KTE	3		None	Call TI	Call TI
UA7815CKC	ACTIVE	TO-220	KC	3	50	None	Call TI	Level-1-220C-UNLIM
UA7815CKCS	ACTIVE	TO-220	KCS	3	50	None	Call TI	Level-NC-NC-NC
UA7815CKTER	ACTIVE	PFM	KTE	3	2000	None	Call TI	Level-1-220C-UNLIM
UA7815QKTE	OBSOLETE	PFM	KTE	3		None	Call TI	Call TI
UA7818CKC	OBSOLETE	TO-220	KC	3		None	Call TI	Call TI
UA7818CKTER	OBSOLETE	PFM	KTE	3		None	Call TI	Call TI
UA7824CKC	ACTIVE	TO-220	KC	3	50	None	Call TI	Level-1-220C-UNLIM
UA7824CKCS	ACTIVE	TO-220	KCS	3	50	None	CU	Level-NC-NC-NC
UA7824CKTER	ACTIVE	PFM	KTE	3	2000	None	Call TI	Level-1-220C-UNLIM
UA7885CKC	OBSOLETE	TO-220	KC	3		None	Call TI	Call TI
UA7885CKTER	OBSOLETE	PFM	KTE	3		None	Call TI	Call TI
UA7885QKTE	OBSOLETE	PFM	KTE	3		None	Call TI	Call TI

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

None: Not yet available Lead (Pb-Free).

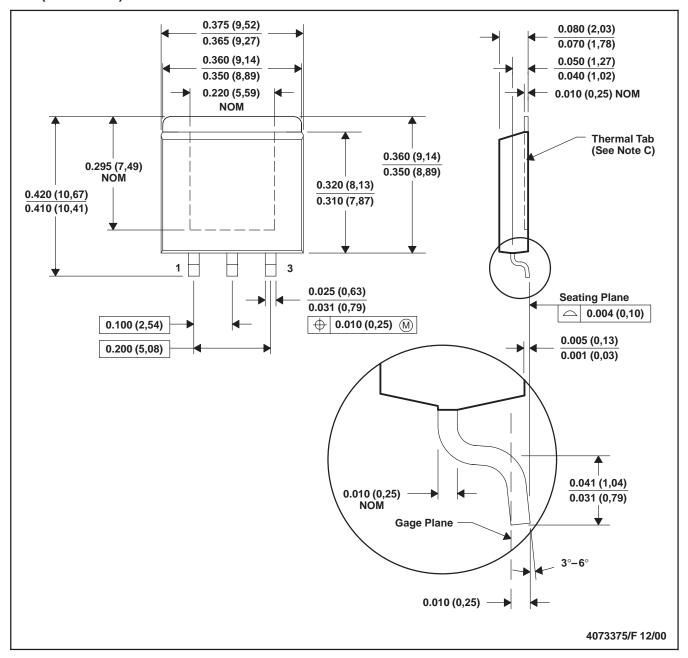
⁽²⁾ Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

PACKAGE OPTION ADDENDUM

1-Mar-2005

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens, including bromine (Br) or antimony (Sb) above 0.1% of total product weight.


(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder temperature.

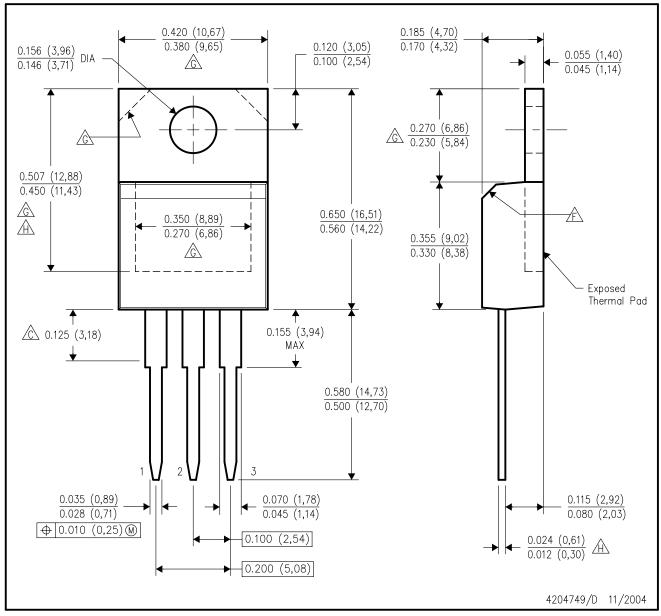
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

KTE (R-PSFM-G3)

PowerFLEX™ PLASTIC FLANGE-MOUNT

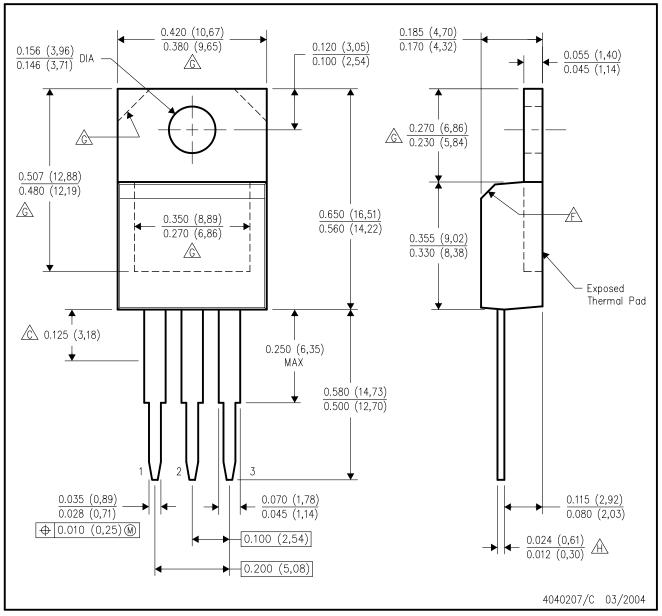
NOTES: A. All linear dimensions are in inches (millimeters).


- B. This drawing is subject to change without notice.
- C. The center lead is in electrical contact with the thermal tab.
- D. Dimensions do not include mold protrusions, not to exceed 0.006 (0,15).
- E. Falls within JEDEC MO-169

PowerFLEX is a trademark of Texas Instruments.

KCS (R-PSFM-T3)

PLASTIC FLANGE-MOUNT PACKAGE


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Lead dimensions are not controlled within this area.
- D. All lead dimensions apply before solder dip.
- E. The center lead is in electrical contact with the mounting tab.
- The chamfer is optional.
- Thermal pad contour optional within these dimensions.
- Falls within JEDEC T0—220 variation AB, except minimum lead thickness and minimum exposed pad length.

KC (R-PSFM-T3)

PLASTIC FLANGE-MOUNT PACKAGE

NOTES: A

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Lead dimensions are not controlled within this area.
- D. All lead dimensions apply before solder dip.
- E. The center lead is in electrical contact with the mounting tab.
- The chamfer is optional.
- Thermal pad contour optional within these dimensions.
- Falls within JEDEC TO-220 variation AB, except minimum lead thickness.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated